
Millennial-scale sustainability of the Chesapeake Bay
Native American oyster fishery
Torben C. Ricka,1, Leslie A. Reeder-Myersa, Courtney A. Hofmana,b, Denise Breitburgc, Rowan Lockwoodd,
Gregory Henkese, Lisa Kelloggf, Darrin Loweryg, Mark W. Luckenbachf, Roger Mannf, Matthew B. Ogburnc,
Melissa Southworthf, John Wahh, James Wessoni, and Anson H. Hinesc

aProgram in Human Ecology and Archaeobiology, Department of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington,
DC 20013; bDepartment of Anthropology, University of Oklahoma, Norman, OK 73019; cSmithsonian Environmental Research Center, Edgewater, MD
21037; dDepartment of Geology, College of William and Mary, Williamsburg, VA 23187; eDepartment of Earth and Planetary Sciences, Johns Hopkins
University, Baltimore, MD 21218; fVirginia Institute of Marine Science, College of William and Mary, Gloucester Point, VA 23062; gChesapeake Watershed
Archaeological Resources, Easton, MD 21601; hMatapeake Soil, Shippensburg, PA 17257; and iVirginia Marine Resources Commission, Newport News,
VA 23607

Edited by Patrick V. Kirch, University of California, Berkeley, CA, and approved April 21, 2016 (received for review January 1, 2016)

Estuaries around the world are in a state of decline following
decades or more of overfishing, pollution, and climate change.
Oysters (Ostreidae), ecosystem engineers in many estuaries, influence
water quality, construct habitat, and provide food for humans and
wildlife. In North America’s Chesapeake Bay, once-thriving eastern
oyster (Crassostrea virginica) populations have declined dramatically,
making their restoration and conservation extremely challenging. Here
we present data on oyster size and human harvest from Chesapeake
Bay archaeological sites spanning ∼3,500 y of Native American, co-
lonial, and historical occupation. We compare oysters from archaeo-
logical sites with Pleistocene oyster reefs that existed before human
harvest, modern oyster reefs, and other records of human oyster
harvest from around the world. Native American fisheries were
focused on nearshore oysters and were likely harvested at a rate
that was sustainable over centuries to millennia, despite changing
Holocene climatic conditions and sea-level rise. These data document
resilience in oyster populations under long-term Native American
harvest, sea-level rise, and climate change; provide context for man-
aging modern oyster fisheries in the Chesapeake Bay and elsewhere
around the world; and demonstrate an interdisciplinary approach
that can be applied broadly to other fisheries.
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Home to rich and productive ecosystems, estuaries have long
been attractive places for human settlement and subsistence.

Following decades or more of overfishing, pollution, and other
perturbations, estuaries and bays around the world are in a dramatic
state of decline (1, 2). Oysters (Ostreidae) are ecosystem engineers
in many estuaries, providing a variety of ecosystem services including
water filtration and habitat construction for other organisms (3–6).
Oysters have also long been an attractive food source for people,
including those living near North America’s Chesapeake Bay (7–10).
With a watershed spanning ∼166,000 km2, the Chesapeake

Bay is the largest estuary in the continental United States and once
supported a massive commercial oyster fishery (8). In the late
1800s, some 400–600,000 tons of oysters were harvested from the
Chesapeake annually, which resulted in depletion and overfish-
ing. Harvests decreased by as much as 50% by the early 1900s
and 98% by the early 1990s (8, 11). This was part of a larger process
termed “fishing down the coast,” with historical overharvest of
oysters occurring first in Massachusetts and New York estuaries
and then southward to the Chesapeake Bay and the Gulf of
Mexico (12). Several US estuaries, including the Chesapeake Bay,
experienced declines in oysters as part of a broader pattern of
historical reductions in a variety of estuarine organisms (6, 8).
Although the precise numbers are debated, oyster populations

in Maryland’s waters today are estimated to represent less than 1%
of their historical abundance (13) and, although some Virginia
oyster populations have shown signs of improvement (5, 14), they

are not much more abundant. This precipitous decline makes it
difficult to establish baselines, adding to the already difficult task
of restoring a sustainable fishery in the face of ongoing harvest,
eutrophication, sedimentation, and disease (15). In the 17th cen-
tury, Captain John Smith and other early colonists reported on the
bounty of the Chesapeake, including its massive, widespread oyster
reefs (16). These early accounts are largely anecdotal, but some
scholars have speculated that oysters were so plentiful during this
time that they could filter a volume of water equal to that in the
Chesapeake in just a few days (17, 18). Catch records provide
empirical data on the oyster fishery but they begin in the 1870s,
after the bay had already been the focus of intensive historical
harvest (8). Given the current state of decline and the major
changes forecast for Anthropocene climate and ecology (e.g., increased
climatic warming and instability, acidification, and invasive species),
a return to the abundance witnessed by John Smith is not feasible,
leaving a gap between ideal restoration goals and reality (15).
A key element missing from discussions of past oyster abundance

and population structure is a comprehensive understanding of the
fishery before historical overfishing (5, 6, 8, 11). Native Ameri-
cans have lived in the Chesapeake region since the late Pleis-
tocene (>13,000 y ago), when it was part of the Susquehanna
River valley, throughout the Holocene submergence of the valley
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and the formation of the modern-day Chesapeake Bay (10, 19).
Due to sea-level rise, preservation conditions, and a dearth of re-
search, only a few shell middens—archaeological trash deposits
with shellfish and other materials—are known to date to before
about 3,200 y ago. In contrast, middens younger than 1,500 y old
are common and provide a record of human interaction with the
Chesapeake Bay before European colonization (20–22). Previous
studies of past Chesapeake oyster populations include estimates
of reef accretion rates (17, 23), analysis of how historical nu-
trient input may have resulted in larger oyster sizes (21), evi-
dence for colonial-period drought and higher estuarine salinity
(24), changes in oyster growth rates from late prehistoric to
modern times (25), and the possibility of localized overharvest
during the colonial period (9, 20). However, there has been
limited investigation into prehistoric Native American impact
on Chesapeake Bay oysters, with previous studies limited to a
single site or localized area (26, 27).
We explore prehistoric (late Holocene; ∼3,500–400 y ago)

changes in Chesapeake Bay oysters within the context of broad
trends from the Pleistocene to the Anthropocene, using a massive
dataset of measurements of 47,927 archaeological (prehistoric/
historic; n = 24,085), fossil (Pleistocene; n = 621), and modern (n =
23,221) oysters (Fig. 1). Archaeologists around the world have used
size changes in mollusks as indicators of human overharvest,
sustainability, and other variables (28–30). Our study is the first,
to our knowledge, to integrate paleontological, prehistoric/his-
toric archaeological, and modern (A.D. 2000–2014) oyster size
data to understand the evolution of a fishery over some 300,000 y
before human colonization and across a range of human occupations.
These data to our knowledge also provide the first comprehensive
millennial-scale and bay-wide analysis of the Chesapeake oyster
fishery before overfishing, introduced oyster diseases, and eutro-
phication that have shaped oyster populations for the past 150 y.
Shellfish size is a metric commonly used to understand human

impacts on fisheries, but other factors such as abundance and
demographic data (e.g., age) are often used in modern studies.
We focus on size because it is currently the only metric that can

be standardized across the samples and time periods of interest.
Moreover, size is the metric used to regulate the fishery today
(minimum catch size >76 mm). Some researchers have speculated
that Native American harvest pressure on oysters was minimal
(10), and there are anecdotal accounts of extremely large (1-ft)
oysters in historical times (6). Therefore, we predicted that our bay-
wide prehistoric archaeological data would contain a mix of oyster
sizes, including very large specimens similar to Pleistocene samples
before human harvest. We expected archaeological samples to
be skewed toward larger sizes relative to today, with any widespread
size reduction occurring late in the prehistoric period or during
colonial and historic times. We also hypothesized that there would
be some prehistoric size reduction through time indicative of hu-
man harvest pressure, because archaeological studies have shown
that ancient peoples all over the world had an influence on shellfish
size (28–30). Alternatively, an absence of size declines and no
change in oyster relative abundance would suggest that the
oyster fishery was sustainable over the long term. We also ex-
plored alternative hypotheses, including human food preferences
and the effects of changing physical and biotic conditions.

Results
Oyster data were grouped for three different scales of analysis.
At the first scale, we use broad temporal and spatial categories to
explore changes and potential human impacts on oysters through
time and throughout the entire Chesapeake (bay-wide). Within
this broadest scale, we divided our data into Pleistocene (0.781 Ma
to 13,000 y ago), prehistoric (3,200–400 y ago), historic (400–50 y
ago), and modern (A.D. 2000–2014) categories. Still at the broad
Chesapeake scale, we then subdivided the data into middle (0.781–
0.126 Ma) and late Pleistocene (0.126 Ma to 13,000 y ago), Early
(3,200–2,500 y ago), Middle (2,500–1,100 y ago), and Late Wood-
land (1,100–400 y ago), historic (including the colonial period, 400–
50 y ago), and modern upper Chesapeake Bay, lower Chesapeake
Bay, and Virginia coastal bays (A.D. 2000–2014). The second
scale of analysis is smaller, providing a detailed examination of
archaeological investigations in two watersheds—Fishing Bay and
Rhode River. The third scale of analysis quantified oyster size
changes within single archaeological sites.

Oyster Size Through Time.Our proxy for oyster size is measurement
of oyster height (>35 mm). This analysis yielded a wide range of
oyster sizes, including oysters as large as 259 mm in the Pleistocene,
189 mm in the prehistoric, and 156–157 mm in historic and modern
times (Fig. 1 and SI Appendix, Tables S1 and S2). A Kruskal–Wallis
test followed by post hoc Mann–Whitney U tests showed that there
are some significant differences in oyster height through time (X2 =
1613.7, P < 0.01) (SI Appendix, Tables S3–S14). The largest re-
duction (17%; Mann–Whitney U 2,403,646, effect size 0.58, P <
0.01) in oyster height was from the Pleistocene (mean 87 mm, SD
38.7, n = 621) to the prehistoric (mean 72 mm, SD 20.1, n = 6,648)
assemblages. There is no statistically significant difference between
middle Pleistocene (mean 92 mm, SD 28.0, n = 36) and late
Pleistocene oyster height (mean 86 mm, SD 39.3, n = 585), but
between the late Pleistocene and Early Woodland (mean 61 mm,
SD 14.8, n = 469) there is a significant decrease in oyster height.
Oyster size increases significantly between the Early and Middle
Woodland (mean 70 mm, SD 19.9, n = 571) and again between the
Middle and Late Woodland (mean 74 mm, SD 20.2, n = 5,608).
Compared with Late Woodland oysters, historic (mean 81 mm, SD
20.1, n = 198) oysters are significantly larger. Modern oysters
(mean 72 mm, SD 19.7, n = 23,221) are significantly smaller than
historic oysters. Rather than decreasing through time with greater
human harvest, harvested oysters tend to get larger through the
late Holocene (prehistoric/historic) until modern size declines, but
all oyster averages during the Holocene are smaller than Pleisto-
cene samples.
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Fig. 1. Comparison of Chesapeake Bay oyster height measurements through
time for fossil, archaeological, and modern assemblages. (A) The box-and-
whisker plots used in this study display data according to the following guide-
lines: The tall central line represents the median of the data; the box represents
data between the first and third quartiles; whiskers represent data within 1.5×
the interquartile range of the median; and circles represent data within 3× the
interquartile range of themedian. Archaeological site trinomials are listed on the
right (SI Appendix, Table S2). (B) Frequency distribution of oyster size classes by
time period. (C) Oyster shell showing location of the height measurement.
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Oyster size distributions show differences between human-selected
and natural oyster assemblages by time period (Fig. 1). Kolmogorov–
Smirnov tests detected significant differences in all pairwise compari-
sons in oyster size distributions between the Pleistocene, prehistoric,
historic, and two modern assemblages (SI Appendix, Table S15).
Oyster height in the Pleistocene fossil reef assemblage has a
larger SD (38.7 mm) and is heavily positively skewed (more indi-
viduals in smaller size classes) compared with Holocene archaeo-
logical assemblages (prehistoric SD 20.1 mm, historic SD 20.1 mm).
Modern oyster reefs from the outer Virginia coastal bays and the
upper Chesapeake also have significantly different population dis-
tributions from either Pleistocene reefs or archaeological sites,
according to Kolmogorov–Smirnov tests (SI Appendix, Table S15).
Although it cannot be compared statistically (Materials and Meth-
ods), the modern sample from the lower Chesapeake appears to be
similar to the sample from the outer Virginia coastal bays (Fig. 1).
Like the Pleistocene reef samples, the lower Chesapeake and
Virginia coastal bay modern reef samples are heavily positively
skewed, but the modern reefs have narrow SDs and are lacking
the very large size classes present in the Pleistocene, probably
due to modern overharvest and disease.
A scatterplot of our samples based on known (modern) or esti-

mated (Pleistocene, prehistoric, and historic) salinity shows no clear
temporal or spatial patterns between salinity and oyster size at the
bay-wide level (Fig. 2). Analysis of correlation and linear regression
shows little relationship between oyster size and the salinity estimates
or distance to the mouth of the bay (SI Appendix, Table S16). There
is a weak positive correlation between modern mean annual salinity
and oyster height at prehistoric archaeological sites at the bay-wide
level (Pearson’s r = 0.403, P = 0.063), but the r2 value (0.16) suggests
that most of the variation in oyster height bay-wide cannot be
explained solely by salinity.

Prehistoric Human Impacts on Oysters. Analysis of oysters from
archaeological sites in two Maryland watersheds (Fishing Bay and
the Rhode River) supply detailed patterns for individual water-
sheds across 3,200–1,500 y of Native American harvest (Fig. 3). In
the Rhode River, there is statistical support (SI Appendix, Tables
S7 and S8) for significant differences in size between most pairs of
archaeological sites, but they do not decrease through time, as we
would expect if humans were overharvesting this ecosystem. There

is a statistically significant increase in size (14–20 mm) during the
historic-period occupation at 18AN1323 (Fig. 3 and SI Appendix,
Tables S13 and S14). At Fishing Bay, only one site, 18DO439, had
a significantly different oyster assemblage (larger average size)
from all other sites. This site overlaps temporally with 18DO429
and 18DO436, suggesting that the size difference could result
from harvesting different microenvironments.
The potential impact of environmental variables becomes clearer

when we compare our high-resolution datasets from the Rhode River
and Fishing Bay with each other (Fig. 3). When all samples within
each watershed are aggregated, oyster size differences between
watersheds are statistically significant (Mann–Whitney U 2,869,300,
P < 0.01), with larger oysters (mean 84 mm, SD 21.9 mm, n =
2,619) in the higher salinity of Fishing Bay and smaller oysters
(mean 66 mm, SD 15.5 mm, n = 4,227) in the lower salinity of the
Rhode River. There is a strong positive correlation between
oyster size and modern salinity (Pearson’s r = 0.806, P < 0.001) at
these 12 archaeological sites. An r2 value of 0.647 suggests that
salinity is a moderately good predictor of oyster height in indi-
vidual watersheds but that other factors are also important.
Four sites (18DO429 and 18DO439 at Fishing Bay and 18AN285

and 18AN1323 in the Rhode River) provide a good stratigraphic
control to test whether there may have been short-term human
impact on oyster size by people occupying the same location
(Fig. 4). Kruskal–Wallis tests showed no statistically significant
differences in oyster populations through time at either of the
Fishing Bay sites, 18DO429 (X2 = 1.20, P = 0.27, n = 51) or
18DO439 (X2 = 3.82, P = 0.28, n = 119), but the samples are
relatively small. At site 18AN285 in the Rhode River, Kruskal–
Wallis and post hoc Mann–Whitney U tests showed statistically
significant differences (X2 = 41.18, P < 0.01, n = 1,176) in size
between level 4 and levels 5–7, which might be from harvesting
different microenvironments or environmental variability. There
are no statistically significant pairwise comparisons between levels
in the other Rhode River site, 18AN1323. Finally, an abundance
index that measures human prey selectivity and compares oyster
relative abundance with all other shellfish identified in each of the
Fishing Bay and Rhode River shell middens demonstrates that
oysters make up over 90% of all shellfish at each of the archaeo-
logical sites, with no decline in relative abundance through time
(SI Appendix, Fig. S1).
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come from dozens of upper bay sampling sites, and consequently these are not
shown on the map. Modern mean annual salinity is plotted against average
oyster height for each archaeological and modern site. Pearson’s correlation
coefficient values show weak correlation between size and estimated sa-
linity (SI Appendix, Table S16). ppt, parts per thousand.
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Discussion
Pleistocene-to-Anthropocene Oysters. This study of a long-term re-
cord of oyster size changes, comparing archaeological, Pleistocene
fossil, and modern oysters, provides to our knowledge the first bay-
wide, millennial-scale window into human harvest of Chesapeake
oysters, serving as a model for future research elsewhere around
the world. These data do not fully support our predictions about
the effects of Native American harvest on oysters. Prehistoric
archaeological oyster sizes do vary through time but are generally
smaller than Pleistocene oysters, and there is no evidence for a
systematic size reduction during prehistoric human occupation
(∼3,500–400 y ago). At the bay-wide scale, oysters actually dem-
onstrate an increase in size through time. No single environmental
or cultural variable explains this increase, it does not occur within
individual watersheds or at single sites, and we caution that our
Early Woodland sample comes primarily from the lower salinity
waters of Rhode River, and oyster sizes may be smaller as a result.
The size data from the Pleistocene reefs compared with later ar-

chaeological and modern samples demonstrate differences in pop-
ulation structure between cultural and natural accumulations of
Chesapeake oysters, with more oysters in smaller size classes in the
natural accumulations. These differences are not a result of our
sampling for this study, because similar bulk sampling methods were
used for nonmodern materials and similar random samples were
used for the modern samples. We believe this likely reflects the
human-selected (e.g., hand-collected) nature of the prehistoric ar-
chaeological oysters, which could have resulted in more consistent
average sizes and fewer very small individuals. People were likely
removing oysters from the reefs in a way that was biased toward
medium-sized oysters, but there were no major decreases in mean
oyster height during the prehistoric Native American occupation
(3,500–400 y ago). It is unclear why the largest size classes present
in the unfished Pleistocene samples were not documented in the
archaeological samples. It is unlikely that these are solely a result
of differing paleoenvironmental conditions, because salinity and
temperature ranges for the three Pleistocene (or fossil) sites fall
within ranges observed from Delaware to North Carolina today
(SI Appendix, SI Text). It is possible that these largest oysters
were overharvested by Native Americans before 3,500 y ago, but
earlier human populations were small and only a handful of shell

middens pre-dating 3,500 y ago are known to exist. Alterna-
tively, many of the largest oysters could have lived in deeper
waters that were not generally harvested by Native Americans.
Another possibility is that people were choosing not to harvest
the largest oysters.
Comparison of modern oyster populations with either the human-

selected archaeological and historical samples or the Pleistocene
oyster deposits is challenging, because nutrient pollution, disease,
and intensive harvest pressure have combined to reduce recruit-
ment in modern Maryland waters and to differentially kill off larger
oysters both in Maryland and Virginia (13, 15). There are simi-
larities between size distributions in Pleistocene Chesapeake Bay
oyster populations and those along the modern Virginia coastal
bays and lower Chesapeake Bay, but very large oysters (>150 mm)
were more common in the Pleistocene. This could be due to the
fact that modern diseases kill oysters before they reach those large
sizes and that fishing regulations permit harvest of larger indi-
viduals (>76 mm) within the populations. The modern data from
the upper Chesapeake Bay (Maryland) are an outlier among the
modern assemblages, containing larger average sizes driven by a
general dearth of small oyster size classes (35–50 mm), because
the population experiences infrequent and irregular recruitment.
Although dramatically reduced in number and recruitment [e.g., <1%
of historical abundance (13)], Maryland oysters are still achiev-
ing average sizes comparable to those harvested in prehistoric
times during the past 3,000 y. We caution that this may be due
primarily to the absence of individuals in small size classes rather
than growth rates comparable to those in the prehistoric period.
The similarities between these two datasets may be coincidental,
and require additional analysis.

Environmental Variables and Oyster Size.Oyster size and abundance
are products of the environmental conditions in which they live,
and human harvest cannot be understood without also considering
the potential influence of environmental change. Salinity is a
driving factor for oyster size in both ancient and modern times,
and influenced the size of oysters harvested by Native Americans
in local watersheds (Fig. 3 and SI Appendix, Table S16). How-
ever, when viewed from the perspective of the entire bay, the
correlation between salinity and oyster size is relatively weak
(Fig. 2). This could result from the high geographic and temporal
variability in Chesapeake salinity, which is difficult to sample at a
single archaeological site with broad temporal and spatial resolution
that could obscure expected variability. Despite the limited corre-
lation between salinity and oyster size bay-wide, there is a size–
salinity correlation in two individual watersheds.
Longer-term climate patterns influenced regional paleoenvi-

ronmental conditions but do not appear to have significantly influ-
enced Native American oyster harvest. The Chesapeake region
responded to the Medieval Climatic Anomaly, with warm, dry atmo-
spheric conditions and higher salinity and higher water temperatures
between A.D. 400 and 900 and cool, wet atmospheric conditions
and cool, less saline water conditions between A.D. 1050 and
1750 (31, 32). Relative sea level in the Chesapeake Bay has
continued to rise throughout the past 3,500 y due to the collapse
of the Laurentide ice sheet forebulge, with ∼7 m of relative sea-
level rise during that period (33). Our data suggest that these major
shifts had little effect on prehistoric harvest patterns, at least on
archaeological timescales, but they warrant more detailed study.
Nutrients and sedimentation are also drivers of oyster productivity,

and likely influenced oyster populations during the historic period.
A 2,000-y study of Chesapeake nutrients and eutrophication
demonstrates important increases during the historic and modern
periods, likely associated with landscape clearing for agriculture
and increased sedimentation in the historic and modern periods,
but suggests little change throughout Native American occupation
(34). These historic nutrient increases likely influenced the size
increase we noted in historic-period Rhode River oysters, which
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Fig. 4. Oyster size variation through time within archaeological sites in the
Chesapeake Bay. (A–D) Oyster height through time from individual archaeo-
logical samples in the Rhode River and Fishing Bay study areas, with the bottom
(oldest) to the top (youngest). (See the legend for Fig. 1 for an explanation of
the box-and-whisker plots.) (E) Mean oyster height through time at a historic
site complex (St. Mary’s City) (9). (F) Mean oyster height at a large shell midden
near the Potomac River, Virginia (44WM119) (26).
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was similar to a pattern identified in the St. Mary’s and Patuxent
rivers (21). Together, these data suggest that human activities,
biotic conditions, and climatic variability likely worked in concert
to influence long-term oyster productivity, size, and abundance.

Sustainability of the Native American Fishery. With limited vari-
ability in oyster size and abundance and no systematic evidence
for a size decline through time during the period from 3,500 to
400 y ago, the Native American Chesapeake Bay oyster fishery
appears to have been largely sustainable. A variety of factors may
help explain this, including technological limitations that resulted
in primarily nearshore harvest, seasonal rounds where people
only exploited oysters during a particular time of year, low human
population density, and broad-spectrum human diets that incor-
porated a mix of marine and terrestrial resources and cultigens.
Little is known about the precise methods that prehistoric Native
Americans used to obtain oysters, but hand collection—perhaps
using simple tools in relatively shallow water—was likely the most
common method (20). Hand collection of oysters in nearshore,
shallow-water/fringing reefs may have promoted consistent size
classes in middens, and may have left significant oyster populations
in deeper water free from human harvest. This would have limited
the long-term impacts on regional oyster populations by preserving
a source population to supply recruits and by leaving substantial
portions of the hard substrate and/or overall 3D reef structure in-
tact. Native Americans in the Chesapeake are known to have har-
vested a wide variety of marine and terrestrial foods, with evidence
for maize cultivation, especially on the major western-shore drain-
ages, beginning ∼1,000 y ago (10). These diverse subsistence strat-
egies would have reduced pressure on single-resource classes (i.e.,
oysters), and may have further helped oyster recruitment following
significant Native American harvest. Although there are many de-
tails of Native American harvest of oysters that remain unknown,
we do know that, in contrast to historic and modern times, Native
American population densities were much lower, there was no
significant trade of oysters outside of the Chesapeake region, oyster
shell was generally not mined for construction, and harvest
methods were far less destructive than historic and modern
techniques [e.g., dredging with sail and steam boats (8)].
Although our study is the first, to our knowledge, to analyze

oyster size throughout the Chesapeake Bay, a few archaeological
studies have investigated past oyster size at single sites or localized
areas (9, 26, 27). Data from the White Oak Point site in Virginia
provide the longest sequence from a single site in the region. Evi-
dence at White Oak Point from ∼4,500 y ago through the early his-
toric period supports our findings, suggesting continuity in oyster size
(Fig. 4) (26). The St. Mary’s City site in Maryland provides evidence
for a localized size decline from the 16th to 17th centuries that was
associated with human population growth during the colonial period
(9, 20). Additional research has suggested that this decline may have
been followed by 19th-century size increases, perhaps associated with
eutrophication and higher nutrient load that increased oyster growth
rates (21). When considered alongside the prehistoric dataset pre-
sented here, the historic period shows collection of larger oyster size
in the Chesapeake. We attribute this to technological shifts, including
the introduction of tonging in the 18th century followed by dredging
in the 19th century (9, 10, 12, 20), which may have increased access to
larger oyster size classes from deeper waters that were previously not
harvested by Native Americans. Increased nutrient load likely also
played a role, but this needs additional testing (21).
Other aspects of human behavior may have contributed to the

apparent sustainability observed in the Native American size data.
One possibility is that Native Americans preferred medium-sized
oysters or lacked the technology to open larger oysters. Although
food preferences may have played a role in the sizes present in our
data, the presence of both small and larger individuals suggests a
wide range of oysters were harvested. We reject the notion that
Native Americans lacked the technology to process larger oysters.

These could be broken with a hammerstone or opened with heat,
like other sizes. Similarly, salinity, nutrients, and other variables
influenced oyster size, particularly in local catchments, but none
show a clear correlation with the patterns we observe bay-wide.
Collectively, the archaeological size and abundance data suggest
that the most parsimonious explanation is that the Native American
fishery was sustainable at century and millennial timescales. This
does not mean that Native Americans did not have distinct temporal
or localized impacts on local reefs. However, harvest patterns reveal
no systematic decline in size or abundance like those observed by
archaeologists in other parts of the world (28–30).
Elsewhere in North America, analyses of late Holocene

Crassostrea virginica from Florida (35) and New York’s Hudson
River estuary (36) also document continuity in oyster size and no
prehistoric size declines. Analysis of shell rings in the southeastern
United States suggests a mix of human influence, with some arguing
for significant human impact (37) and others for more limited effects
(38). Beyond North America, analysis of Ostrea edulis in Denmark
demonstrates human-induced size decreases from the Mesolithic to
the Neolithic (39). Together, these data demonstrate a range of
human influence on oyster size in the past but general resilience to
Native American harvest pressure in several North American
C. virginica populations. These data add to a growing body of research
around the world that documents a continuum of ancient human
influence on shellfish populations, ranging from human-induced re-
duction of shellfish size from overexploitation to continuity and size
increases that may have resulted from changing environmental vari-
ables, especially nutrient increases (26–30, 35–40).

Implications for the Anthropocene. The modern Chesapeake Bay,
like other estuaries around the world, is a complicated system where
recovery is hindered by an array of factors. Oysters are currently
combating the sustained effects of overfishing, introduced and native
disease [multinucleated sphere unknown (MSX) and Perkinsus mar-
inus (dermo)], climate change, eutrophication, and sedimentation,
some of which were not major drivers of change in past ecosystems
(11, 41, 42). Although many of these did not play a major role in the
prehistoric oyster fishery, our research demonstrates the resilience of
oyster populations through rising sea levels, changing climate, and
extensive Native American harvest over several millennia.
This model of a sustainable prehistoric Native American harvest

of oysters, primarily by hand collecting from fringing reefs that left
deeper-water reefs largely intact, provides insight into modern res-
toration. Although the effectiveness of the modern restoration
strategy of Chesapeake oysters is debated (5, 15), our Pleistocene-to-
Anthropocene size and archaeological relative abundance data
provide some support for recent Chesapeake Bay oyster restoration
efforts, including reduction of modern harvest levels and creation of
increased no-take zones (13, 43) that would mimic the more mobile
and flexible Native American fishery. Current restoration plans (44)
include enhancement of oyster density using hatchery seed, addition
of new hard substrate where needed, and no-take reserves that are
conceptually similar to deep-water areas where harvest was unlikely
before the introduction of oyster tongs and dredges. In addition, our
Pleistocene data provide a baseline against which the size distribu-
tion of oysters in no-take reserves could be evaluated. These data do
not provide all of the answers to a very challenging and complicated
restoration and conservation effort, but they do provide an example
of an apparently sustainable millennial-scale fishery, elements of
which may help inform restoration and harvest in today’s ecosystem.
Finally, our data illustrate the importance of conserving oysters

beyond the ecological services or food they provide. Eastern oys-
ters, like other oysters around the world, are deeply intertwined with
the people who lived around the Chesapeake Bay and beyond
(7, 10). Consequently, oysters warrant conservation for their signifi-
cant role in North American cultural history, including that of Native
Americans, Euro-American colonists, modern watermen, and the
general public.
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Materials and Methods
We reconstructed the size of C. virginica using measurements of whole left
oyster valve height from archaeological and fossil contexts and modern reef
sites (SI Appendix, SI Text). Height (also called length) is the greatest dimension
in millimeters from the hinge to the growth edge (Fig. 1). We excluded speci-
mens that were smaller than 35 mm from our analysis because some of the
modern datasets do not include juveniles/spat. Although this results in slight
increases in average sizes (1 mm or less), this had no effect on our interpreta-
tions and makes our data comparable across time periods.

We synthesized previously reported values for archaeological oyster
mean size, which did not exclude oysters smaller than 35 mm (SI Appendix,
Table S2). All measurements are derived from well-dated archaeological
and fossil contexts, with ages based on radiocarbon dates and time-sen-
sitive artifacts for archaeological assemblages and on amino acid race-
mization and stratigraphic relationships for the fossil assemblages (SI
Appendix, Tables S1, S2, S18, and S19). Modern samples are from strati-
fied random stock assessment surveys, providing a range of environ-
mental conditions for comparison (SI Appendix, SI Text).

Statistical analysis of all samples in SI Appendix, Table S1 was performed in R
version 3.2.3 (SI Appendix, SI Text). Modern samples from the lower Chesapeake
Bay were included in most of our study but excluded from some statistical
analyses because oyster size data were only available in categorical bins (1–2mm,
5–6 mm, etc.) rather than raw data. We compare oyster height with estimated
salinity and distance to the mouth of the Chesapeake because environmental
factors (salinity, nutrients, dissolved oxygen, etc.) vary with distance to mouth
within watersheds (45). Because previous studies of Chesapeake Bay nutrient and
sediment load (34) were on different temporal and spatial scales from our data,
we make qualitative rather than statistical comparisons. We also analyzed ar-
chaeological data from oysters from small subestuaries, where environmental
conditions were less likely to vary spatially at a specific time interval (46).
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