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Ecological risk assessment can be enhanced with predictive models for metal toxicity. Modelings
of published data were done under the simplifying assurnption that intermetal trends in toxicity
reflect relative metal-ligand complex stabilities. This idea has been invoked successfully since
1904 but has yet to be applied widely in quantitative ecotoxicology. Intermetal trends in toxicity
were successfully modeled with ion characteristics reflecting metal binding to ligands for a wide
range of effects. Most models were useful for predictive purposes based on an Fratio criterion
and cross-validation, but anomalous predictions did occur if speciation was ignored. In general,
models for metals with the same valence (i.e., divalent metals) were better than those combining
mono-, di-, and trivalent metals. The softness parameter (o) and the absolute value of the log of
the first hydrolysis constant (|log Koyl were especially useful in model construction. Also, AE,
contributed substantially to several of the two-variable models. In contrast, quantitative
attempts to predict metal interactions in binary mixtures based on metal-ligand complex
stabilities were not successful. — Environ Health Perspect 108(Suppl 6):1419-1425 (1998).
http.//fehpnet1.niehs.nih.gov/docs/1998/Suppl-6/1419-1425newman/abstract.htm!
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Quantitative structure—activity relationships
(QSARs) are applied widely to predict
bioactivity (e.g., toxicity or bioavailabil-
ity) of organic compounds. In contrast,
models relating metal ion characteristics
to their bioactivity remain underex-
ploited. A few models exist for human
risk prediction [e.g., Williams et al. (1)]
but quantitative models have not been
fully explored for nonhuman species. This
is surprising because such quantitative ion
character—activity relationships (QICARs)
would be extremely useful for predicting
effects of unrested merals during risk
assessment activities. Also, qualitative ion

character—activity reladonships (ICARs)
based on simple metal-ligand binding have
been described in the literature for nearly a
century. As an early example, Mathews (2)
assumed that merals were most active in
their ionic form (the ionic hypothesis) and
correlared metal toxicity to characreristics of
ion binding to biomolecules. Especially
useful were characteristics reflecting bond
stability with ligand groups possessing O,
N, and S donor atoms. For the last half-
century, permutations on this approach were
applied successfully by Jones (3,4), Binet
(5), Loeb (6), McGuigan (7), Biesinger
and Christensen (8), Jones and Vaughn
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(9), Kaiser (10), Williams and Turner (/7),
Babich et al. (72,13), Fisher (/4), Newman
and McCloskey (15), McCloskey et al.
(16), and Tatara et al. (/7,18). Modeling
was often based on hard and soft acid and
base theory (9.11,19).

This approach has not been evaluated
for its predictive usefulness despite clear
indications from ICARs that QICARs were
feasible. Newman and McCloskey (/5)
suggested that the contrasting extent of
QSAR and QICAR development resulted
from two factors. First, the QSAR approach
was quickly incorporated into ecotoxicology
because it had already proven its worth in
pharmacology and human toxicology. In
contrast, QICARs were not well established
in pharmacology or human roxicology
because the major focus of these disciplines
was organic drugs and poisons. Second,
chemical speciation complicates prediction
because several metal species are present
simultaneously and the bioavailability of
each is ambiguous. However, some of this
ambiguity can be removed by judiciously
applying the free ion activity model
(FIAM) (20). The FIAM, an extension of
the ionic hypothesis, holds thar the bioac-
tivity of a dissolved metal is correlated with
its free ion concentration or activity. The
complication of simultaneous exposure to
many species can be minimized by focusing
on the free ion. Because both impediments
are resolvable, no inherent obstacle impedes
QICAR development to the same level of
utility as that of QSARs.

This paper assesses the QICAR
approach for predicting meral roxiciry.
This is done by reanalyzing metal effects
dara reported elsewhere. Models are
assessed by cross-validation (PRESS
method as described in “Methods”) relative
to their effectiveness for predicting bioac-
uvity of untested metals. An attempt is also
made to extend this approach to prediction
of metal interactions in binary mixtures.

Methods
Data Sets

Nineteen published data sets were selected
that report effects for an adequate number
and range of metals (Table 1). To reinforce
the generality of conclusions, we used data
for widely differing species, metals, modes
of exposure, and effects. To avoid bias in
conclusions, only the most comprehensive
data ser was selected if very similar sets
existed. Published data sets involved
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Table 1. Data sets used in modeling.

NEWMAN ET AL.

Exposure
Species or enzyme system time Effect lons Reference
Carbonic anhydrase (from catfish) = lsg Na, Ca, Mn(ll}, Fe{lll), Co, Ni, Cu(ll), Zn, Christensen (21}
Ag. Cd, Hg. Pb
Lactic dehydrogenase - Iy Mn{ll}, Fe(lll), Co, Cu(ll), Zn, Ag, Cd, Hg Christensen and Tucker (27)
(from white sucker)
Glutamic oxalacetic transaminase - Iz Ca, Fellll), Ni, Culll), Zn, Ag, Cd, Hg Christensen and Tucker (22]
(from white sucker)
Turbot (TF) cells 96 hr NRsg Mn(ll], Co, Ni, Cu{ll), Zn, Cd, Pb Magwood and George (23]
Bluegill (BF-2) cells 96 hr NRgg CA(Il), Mn(ll}, Co, Ni, Culll), Zn, Ag, Ha. Pb Babich et al. (12,13)
Hamster cells 7 days CEsgg Mg, Mn(ll), Co, Ni, Culll), Zn, Sr, Ag, Cd, Hg Hsie et al. (24)
Vibrio fischeri (Microtox) 15 min ECq Li, Na, Mg, K, Ca, Cr{lll), Min{ll), Fe{lll}, Co. McCloskey et al. (16)
[bioluminescence) Ni, Culll), Zn, Sr, Ag, Cd, Cs, La, Hg, Pb
Diatom - \ICF Ma, Ca, Cr{ll1), Mn(ll), Fe{lll), Ca, Ni, Cu(ll), Fisher (14)
In, Ag, Cd, Cs, Hg, Pb
Fungi (Aftemaria tenuis) 18 hr EDg Li, Na, Mg, K, Ca, Cr{lll), Mn(ll), Co, Ni, Somers (25)
(germination) Cu(ll}, Zn, Sr, Ag. Hg, Pb
Funai (Botrytis fabae) 18hr EDgy Li, Na, Mg, K, Ca, Cr{lll), Mn(ll}, Co, Ni, Somers (25)
(germination) Culll), Zn, Sr, Ag, Hg, Pb
Nematode 24 hr LCsy Li. Na, Mg, K. Ca, Crlll), Mn{li), Fe{lll), Co. Tatara etal (18)
(Caenorhabditis elegans) Ni, Culll), Zn, Sr, Cd, Cs, La, Pb
Planaria (Polycelis nigra) 48 hr TC Na, Mg, K, Ca, Cr{lll), Mn(ll), Ca, Ni, Cull), Jones (4)
Zn, Sr, Ag, Cd, Hg, Pb
Daphnia magna 48 hr LCq Na, Mg, K, Ca, Cr{lll), Mn(ll), Fe(l), Co, Ni, Khangarot and Ray (26 )
Cu(ll}, Zn, Sr, Cd, Hg. Pb
Daphnia magna (reproduction) 3 weeks ECy5 Na, Mg, K, Ca, Cr{lll), Mn(ll), Fe(ll), Co, Ni, Biesinger and Christensen (8]
Cu(ll), Zn, Sr, Cd, Hg, Pb
Daphnia magna 3 weeks LCso Na. Mg. K, Ca, Crlll), Mn{ll), Fe(Ill), Co, Ni, - Biesinger and Christensen (5]
Cu(ll), Zn, Sr, Cd, Hg. Pb
Fruit fly 4 days LCsy Mg, Crlil), Mn(ll), Co, Ni, Cu(ll), Zn, Sr, Ag, Williams et al. (1)
[Drosophila melanogaster) Cd, Hg
Amphipod 36 hr LCsg Cr{lin), Mn(ll), Fe(ll1), Co, NI, Culll), Zn, Ag, Martin and Holdich (27
(Cranogonyx pseudogracillis) Cd. Hg, Pb
Three-spined stickleback 10 days 1C Na, Mg, K, Ca, Cr{lll), Mn(ll), Co, Ni, Cutll}, Jones (3)
(Gasterosteus aculeatus) Zn, 5r, Ag, Cd, Hg, Pb
Mouse 14 days LDgg Ma, Cr{ll1], Mn (11}, Fe (1lI), Co, Ni. Cul(ll). Williams et al. (7}

Zn, 5r, Ag, Cd, Ha, Pb

Abbreviations: CEsp, 50% effect concentration on ability to form colonies; ECyg, effective concentration for 16% response; EDgg, effective dose for 50% response; log, inhibi-
tion at the 20% level; lg, inhibition at the 50% level; LCsy, concentration killing 50% of exposed individuals; NRsp, neutral red response at the 50% level; TC, threshold con-

centration, VCF, volume concentration factor.

enzyme inactivation (21,22), viability of
cultured merazoan cells including cells
from two fish (/2,23) and a mammal (24),
germination inhibition of two fungi (25),
bioaccumulation in a marine diatom (74),
inhibition of bacterial bioluminescence
(Microtox assay, Microbics Corporation,
Carlsbad, California) (16), and acute toxi-
city to soil nematodes (77,18). Acute toxi-
city was also examined for diverse aquatic
invertebrates including a planarian (4),
cladoceran (26), insect (1), and amphipod
(27). Several data sets involved chronic
exposures with lethal (7,3,8) or sublethal
(8) end points. For all studies, barium tox-
icity was excluded from models because of
its very specific interference with K* flux in
excitable tssues of metazoans (28-31).

Ion Characteristics

One- and two-explanatory variable models
were constructed from six ion qualities. The
electronegativity (),,) and Pauling ionic

radius (r) were combined ro produce a
covalent index (),,27) reflecting the relative
importance of covalent versus electrostatic
interactions during meral-ligand binding
(32). The ion charge (Z) and Pauling ionic
radius were combined o generate a second
index, the cation polarizing power (2219,
reflecting the energy of the meral ion dur-
ing electrostatic interaction with a ligand
(32). However, no models using Z%/r are
reported here because this index did not
contribute to the best candidate model for
any data set. A softness index (G,) (9,/1)
was produced by dividing the difference
berween the coordinate bond energies of
the metal fluoride and iodide by the coordi-
nate bond energy of the metal fluoride.
This index reflected metal ion softness, the
relative tendency for the outer electron shell
to deform (polarizability), and che ion’s
tendency to share electrons with ligands.
Metal affinity to intermediate ligands such

as those with O donor atoms was estimarted

with another index (llog Kpyl) based on
the first hydrolysis constant of the ion, i.e.,
Koy for M"* +H,0 — MOH"!+H*
(15). Following the approach of Kaiser
(10), AN/AIP and AE, were also explored
in model development. Log AN/AIP did
not improve models, as suggested by Kaiser
(10); AN/AIP was used instead. Atomic
number (AN), notionally reflecting ion
inertia or size, was combined with AIP (the
difference in ionization potentials for the
ion oxidation number OX and OX-1),
which reflected ionization potendal. The
absolure difference between the electro-
chemical potential of the ion and its first
stable reduced state (AE)) reflected an ion’s
ability to change electronic state. Values for
these ion characteristics used in this study
are tabulated by McCloskey et al. (16).

Model Assessment

Linear regression models were generated
with these six variables (,.2r, Z2/7 Gy
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Ilog Kol AN/AIP, AE)), and the SAS
Procedure GLM general linearized model
(33). Models including Z?/r were not
reported for reasons already stated. Three
levels of model selection followed model
generation. This procedure was applied o
models including divalent metals alone or
all metals regardless of valence. First, the
contribution of a variable to each model
was tested for statistical significance (F sta-
tistic from Type 111 sum of squares,
o =0.05). Only models in which all vari-
ables contributed significantly were consid-
ered further. Second, the predictive
potential of models was estimared with an
F-ratio approach because usefulness for
prediction is not reflected accurately by a
model’s statistical significance. More rigor-
ous criteria must be applied. A ratio of the
observed F saatistic (regression sum of
squares divided by the residual sum of
squares) to the critical £ staristic (0= 0.05)
greater than 4 to 5 is one accepted, albeit
arbitrary, threshold for acceptable predic-
tive utility (34). The most stringent
Fopserved! Fericical f 25 was adopted here.
Finally, if more than one useful model
existed for a dara set, the best was selected
by minimum Akaike’s informartion crite-
rion estimation (MAICE) (35). With
MAICE, models that differ in complexity
(i.e., one- vs two-explanatory variables)
can be compared. An Akaike’s informa-
tion criterion (AIC) was calculated with
the log likelihood function of each model
[derails can be found in Yamaoka et al.
(35) and Newman and McCloskey (15)]:
AlIC = -2(log likelihood) + 2P, where P is
the number of estimated parameters in
the candidate model. The model with the
smallest AIC was judged to contain the
most information. With this three-step
procedure, the best model was selecred
from among those that were potentially
useful for prediction.

Cross-validation was performed on the
best divalent metal models to estimate the
magnitude of deviations in effect predic-
tion for unknown meuals. For each of the
13 divalent meral dara sets producing
potentially useful models, a series of mod-
els was generated after omitting one metal
at a time. Each time this was done, the ion
characteristics of the omirted meral were
placed into the model to predict an effect
for the omitted metal. This cross-valida-
tion (36) was done with the option
PRESS in SAS Procedure REG (33). The
deviation from perfect prediction was
expressed as the percentage [(observed
l°»":‘f‘3"~'fmcul o= Predicwd ef&c‘model without
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metal i1/observed effect, .1 1% 100. Median
and interquartile ranges for these percent-
ages summarize the general deviations
from perfect prediction.

Interactions in Binary Mixtures

Bacterial bioluminescence data for binary
mixtures of mertals (75) were examined
statistically to assess the hypothesis that
metals with strong and similar covalent
binding to ligands will interact strongly.
The qualitative conclusions of Newman
and McCloskey (15) were tested statisti-
cally for two series of mixtures: Cu in com-
bination with Ca, Cd, Hg, Mg, Mn, Ni,
Pb, or Zn; and Mg in combination with
Ca, Cd, Hg, Mn, Ni, Pb, or Zn. Inter-
actions were assessed statistically using the
SAS Procedure MIXTURE (33) with an

interaction term (i.e., metal; X meral;).

Statistical significance and magnitude of

the interaction terms were used to assess
interactions between paired merals. If the
above hypothesis was correct, the intensity
of interaction would be greatest berween
Cu and similar metals (e.g., Hg or Cd) and
lowest for Cu and dissimilar metals (e.g.,
Mg or Ca). In the second series of mixtures
there would be little interaction berween
Mg and other metals.

Results
Models for Divalent Metals

High correlation coefficients were associated
with many one- and two-variable models for
divalent metal effects (Figure 1 and Table
2). Based on a stringent criterion of an F
ratio =95, 13 of the 19 data sets had at least
one model of predictive utility. Data sets
failing to produce useful models involved
cultured cell viability (three studies), in vitro
inactivation of carbonic anhydrase, and
inhibition of fungal germination. Fruit fly
mortality data also failed to produce a useful
model according to our stringent criterion
but nevertheless had a high F ratio of 4.5.
One- or two-variable models of most pre-
dictive promise included llog Kpyl or ©,.
Several rwo-variable models, especially those
including AE,, were also among those with
predictive promise. The covalent index
(3,27 alone or combined with another vari-
able never produced the best model for any
dara set. Five of the thirteen most informa-
tive models (MAICE) were single-variable
models. The median r2 for these best and
predictively useful models was 0.90 (range
0.78 to 0.97). Approximately 90% of the
variation in metal effect could be explained
by the models.
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Figure 1. Representative data illustrating the relationship between metal effects and metal ion characteristics.
Responses range widely from enzyme inhibition (lactic dehydrogenase, LDH) (22) to toxicity of cultured turbot cells
(23) to acute lethality of a crustacean (amphipod) (27) to chronic toxicity of mice (1) and Daphnia magna (8).
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Table 2. Correlation coefficients () for models with divalent metals.?

_ Dne-variable models

Two-variable madels

Study Kl Oy |log Ko (%t llog Kgul) [ANSAIP, AE,) (o, |log Koul) (ap AE) (|log Koy, AE,)

Carbonic anhydrase 0.09N 042N 0518 055N, S 022NN 054N, N 056 S, N 058S N

Lactic dehydrogenase 0718 045N 0.97°S 097N, S 050N, N 097N, S 051N, N 0975 N

Glutamic oxalacetic 0.76 S 0708 0915 091N, N 075NN 09285, 8 0855.N 092S. N
transaminase

Turbot (TF) cells DOIN 085S 001N 006N, N 00ZN. N 089S, N 085S, N 001N, N

Bluegill (BF-2) cells <0.01N 0818 039N 054N, N 017N.N 082S, N 0825, N 041N, N

Hamster cells 0498 0738 024N 0645, N 0B84N.S 089S, S D.85N, N 073N, S

Bacteria 0638 0725 0775 082N, S 081S.§ 082N, N 081NN 0.89°S, S
(V. fischen)

Diatom 0485 0578 0638 068N, N 079N, S 067N, N D795, N 0.90°5, S

Fungi 064S 060S 0728 080N, N 071N, S 073N, N 066N, N 0785, N
(Altemarnia tennis)

Fungi 0588 0728 0768 080N,S 085N, S 077N, N DB5N, S 091°S, S
(Botrytis fabae)

Nematode 0.73S 0345 0.79°S 086N,S 073N.S 0.80N, S 052N, N 0B3S N
{Caenorhabditis elegans)

Planaria 020N 0.84°5 0705 075N, S 043N, N 0.86 5, N 0855, N 072S.N
(Polycelis nigra)

Daphnia magna 0378 0835 086 5 086N, S 062N,S 0.93°S, S 0835 N 0885 N
{48-hr LC5[||

Daphnia magna 0435 0.785 0508 D54N, N 082N.S 0785, N 0BES N 077N, S
(reproduction}

Daphnia magna 0388 080S 0548 056N, N 081N, S 0805,N 0.88°S, S 079N, S
(3-week LCsp)

Fruit fly 0555 060S 026N 075S,N 089°S, S 066S.N 061NN 045N, N
(Drosophila melanogaster)

Amphipod 012N 0778 0818 083N, S 037NN 097°S, S 0798, N 0815 N
(Cranogonyx pseudogracilis)

Three-spined stickleback 0558 0785 0795 0B1N,S 079N.S 0.86 N, N 083S, N 0.89°S, S

Mouse 016N 0958 0528 053N, S 053N, S 0965, N 0965 N 065N, N

Correlation coefficients are bold for models with all significant covariates and an Fratio=5.0. The specific ions fit to each models are listed in Table 1. Statistical signifi-
cance is noted by an S or N, e.g., N, S for the (6, [log Kpw} model indicates that o, did not, but |log Kgy| did, contribute significantly to the model. *Characteristic(s) providing

the best model (MAICE).

Cross-validation of the best divalent
metal models (Table 3) indicated that the
median deviations between observed and
predicted effects were small. The median
deviations were less than 22%; most were
closer to 10%. For comparison, a well-
known QSAR model for bioconcentration
of eight organic compounds in fish (37)
had a median difference of —7% and an
interquartile range of —13 to 14%.
However, many models poorly predicted
effects for specific metals. These merals
tended to be extreme class a (e.g., Mg),
class b metals that undergo considerable
speciation in solution (e.g., Hg, Pb), or
metals with the tendency to precipitate
from solution (e.g., Mn). Under the
assumption thar speciation contribured to
some of these poor predictions by models
built from total metal concentrations, con-
centrations of free metal ion were esti-
mated with the MINTEQA2 Version 3.10
program (38) for two darta sets involving
bacterial bioluminescence (75,16). These
assays were conducted in contrasting media
having speciation similar to marine (15) or
freshwater (/6) environments. Excepr for
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Hg in media having speciation similar to
marine systems, ECsg values of metals were
expressed as the free ion concentration.
The ECs for Hg was expressed in terms of
the free ion plus neutral chloro complex
concentration because neutral chloro com-
plexes of Hg can also be bioavailable (39).
In both media the extremely discordant
predictions were greatly diminished or
eliminated if ECsq values were expressed in
terms of the speciated meral concentration

(Table 3).
Models Including All Metals

Although correlation coefficients were
lower than those for the divalent metal
models (median 0.80, range 0.67 w 0.87),
useful models including all metals (mono-,
di-, and trivalent) were generated for 13 of
the 19 dara sets (Table 4). Approximately
80% of the variadion in effect for merals
could be arttributed to the explanatory vari-
ables. Eight of thirteen dara sets producing
useful models had the best (MAICE) model
involving only one explanatory variable.
Again, the llog Koyl or 6, indices con-
tributed to many of the best one-variable

models. As with the divalent metal models,
dara sets failing to produce useful models
tended to be those for in vitro enzyme
inactivation or cultured cell viability. Data
for bioaccumulation of merals in a marine
diatom and crustacean toxicity also failed
to produce useful models.

Metal Mixtures

Although there were qualitative indications
of concentration-dependent interactions
between metals with similar and high cova-
lent binding tendencies, no such trends were
noted in this formal analysis. The only sig-
nificant trends in the intensity of the inter-
action term for both series of mixtures was a
consequence of increasing LCs, values with
decreasing covalent interactions; this trend
was an artifact of the data structure.
Regardless of whether Cu or Mg was com-
bined with metals, there was a upward trend
in the interaction term, with increasing ten-
dency of the competing metal to interact
covalently with ligands. Such a trend for the
Mg series of binary mixtures was inconsis-
tent with predictions from the initial
hypothesis. The results did not support the
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Table 3. Cross-validation of the best models for divalent metals.?

PREDICTING METAL TOXICITY

Median, Interquartile range Extreme predictions,
Data set % (05 to Qys), % % deviation = 100%
Lactic dehydrogenase 13 -53t021 ~1484 (Cu)
Glutamic oxalacetic transaminase 4 -15t027
Bactena, freshwater (V. fischeri) -3 -4451013 -9806 {Hg)
-1510 (Pb}
—445 (Cu)
Bactena, freshwater (V. fischeri) b -17t022 156 (Pb)
speciated -389 (Cu)
=105 (Cd)
Bacteria, marine (V. fischeri) 7 551015 ~1027 (Hg)
1154 (Pb)
Bacteria, marine (V. fischeri) speciated 12 -28 to 52 -149 (Hg)
129 (Pb)
Diatom 1 =30t 13 ~325 (Mg)
135 (Ca)
Fungi |Botrytis fabae) 21 47 1057 786 (Zn)
Nematode (Caenorhabditis elegans) 12 241030 182 (Pb)
Flanaria (Fofycelis nigra) -6 ~46 to 105 132 (Mn)
105 (Pb)
Daphma magna (48-hr LCsg) -6 ~40t0 21 101 (Mg)
Daphma magna (reproduction) 2 ~154 to 68 250 (Mg)
154 (Mn)
Daphnia magna (3-week LCsg) -1 -9t 7
Amphipod (Cranogonyx pseudogracilis) 19 -311070 287 (Co)
~241 (Ni)
Three-spined stickleback -7 ~B3to 23 ~708 (Mn)
~200 {Co)
Mouse 8 -8to17 ~258 (Mn)

Deviations are expressed as percentages, [[observed effecty., — predicted elfeclpnge withou metal J/0bserved

effect e 1> 100.

Tahle 4. Correlation coefficients () for models with all metals (mona-, di- and trivalent metals).#

initial hypothesis that mixwure interactions
could be predicted from the tendency to
covalently bind with ligands.

Conclusion

Quantitative ion characrer—activity
relationships can be developed for a range
of effects based on metal-ligand binding
theory. Estimations of speciation and
application of the FIAM were not required
to develop useful QICARs for some metals
in the daw sets. Our work with QICAR
development for microbial bioluminscence
(15,16) and nematode toxicity (/7,18)
supports this observation. However, there
are clear indications that calculation of free
ion concentrations or activities will greatly
improve modeling, i.e., eliminate or reduce
the magnitude of anomalous predictions
for some class b merals.

The results for the relatively simple
in witre enzyme inactivation and cultured
cell viability studies illustrate the difficulties
associated with using models based on roral
metal concentration. These data sets invol-
ved buffered or complex-media, i.c., the
enzyme inactivation in a buffered phos-
phate solution and cell culture experiments
in complex media containing components
such as 10% feral calf serum. Another data
set failing to produce a useful model was
associated with a high ionic strength media,
i.e., bioaccumulation in a marine diatom.

One-variable models

Two-variable models

Study YT o, log Kod  (xu?r. llog Kol IAN/AIP, AE,) (G [log Kol (0p AE,) {[log Koy, AE,)
Carbonic anhydrase 023N 0585 025N 035N, N 02BN, N 0595 N 0698, N D26 N, N
Lactic dehydrogenase 0795 049N <001 N 0795, N 0.57N, N 050 N, N 052N, N D.0BN, N
Glutamic oxalacetic 08475 0608 <001TN 0BS5S, N 0BOS, N 0.67S,N 0755, N D.05N, N
transaminase
Turbot (TF) cells 0.01N 08583 001N 0.06N, N 0.0ZN,N 089S, N 085S, N 0.01 N, N
Bluegill (BF-2) cells 0.10N 0605 005N 015N, N 031N, N 0768, N 06035, N DABN, N
Hamster cells 0558 0.77°§ 011N 0555, N 082S, S 0.83S, N 086S,N 067N, S
Bacteria {V. fischeri) 0705 0.805 0495 0.83°5, 5 0BON,S 0B1S N 084S, N 078N, S
Diatom 0445 0605 0448 06858 073N, S 0658, N 073N, S D73N, S
Fungi [Altemaria tennis) 0598 0.67°S 056S 0.745,8 DB7N,S 0715 N 071N, N D67 N, N
Fungi (Botrytis fabae) 0.58S 0.69°S 0.56 S 0.745,8 076N, S 0728 N 077N, N 075N, S
Nematode 0558 0495 06935 0.85°5, S 056N, S 070N, S 054N, N 0725 N
|Caenorhabditis elegans)
Planaria (Folycelis nigral 0355 0.70%5 0295 043N, N DA7N, S 071S.N 0.70S, N 041N, N
Daphnia magna (48-hr LCsp) 0525 0.80°5 0588 06BN, N 067N, S 082S N 080S,N 066N, N
Daphnia magna(reproduction) 0508 0.68 5 0288 0545 N 0.84°S, S 0745 N 076N, N 071N, S
Daphnia magna (3-week LCsp) 0475 0705 0308 0525,N 0.83°5, S 0758, N 077N, N 071N, S
Fruit fly 0435 0.56 5 013N 046N, N 0.87°S, 8 0575 N 059N, N 039N, N
(Orosophila melanagaster)
Amphipod 0.27N 0685 <001 N 027N, N DA6S, N 0715 N 0695, N D.O5N, N
(Cranogonyx pseudogracilis)
Three-spined stickleback 0638 0.71%§ 0428 071 8. N 0.76 S, S 0718, N 0745, N 063N, S
Mouse 020N 0.7145 005N 0.ZIN.N 0.50N, 3 076 S.N 0.73S.N 033N, 5

“Correlation coefficients are bold for models with all significant covariates and an F ratio =5.0. The specific ions fit to each models are listed in Table 1. Statistical signifi-
cance is noted by a S or N, e.g., N, S for the (o, [log Ky model indicates that o, did not, but [log Kgy| did, contribute significantly to the model. bCharacteristicfs) providing

the best model (MAICE).
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This association of model failure with
complex exposure media suggests that spe-
ciation calculation would improve model-
ing because speciation is most extensive
under these conditions. This is furcher
supported by the diminution of deviations
from perfect prediction during cross-vali-
dation of models considering speciation. If
speciation is ignored, predictions of effect
should be done cautiously for class b and
some intermediate metals characterized by
extensive speciation in solution. Published
trends for metal speciation in marine (40)
and freshwater (40,41) systems can be
used to identify those metals for which
speciation should be considered during
QICAR development.

The ion characteristics of most general
value in constructing QICARs were llog
Kou!l and 0, although other variables
such as AE, were also important in several
models. The llog Koyl reflects the ten-
dency for a metal ion to form a stable
complex with intermediate ligands.
Intermediare ligands on biomolecules
would include groups with O donor
atoms (e.g., carboxyl groups). This sug-
gested thar binding with such functional
groups is important in determining the

NEWMAN ET AL.

relative bioactivity of metals. The softness
index (0,) quantifies the ability of a metal
ion to accept an electron during interac-
tion with a ligand. It reflects the impor-
tance of covalent interactions relative to
electrostaric interactions (32) in derer-
mining intermetal trends in bioactivity.

The results also suggest that QICARs
based on the characteristics used in this
study are best developed for metals of simi-
lar charge. Although models based on vari-
ables such as 6, did produce viable models,
Ahrland (42) and Williams and Turner
(11) argue against the application of o, fc_n‘
metals differing in charge. Instead, vari-
ables adjusting for differences in charge,
such as 6 (11), may be required.

Effective application of the QICAR
approach may also be improved by careful
examination of the values used to generate
the explanatory variables. Considerable
judgment is required when selecting
among published estimates. More involved
analysis of these data for application to
QICAR generation is currently required.
Regardless, QICARs are now feasible,
especially if they were produced with
speciation concentrations for metals of
similar charge.

Ecological risk assessment would be
enhanced by reliable models for predicting
effects of untested metals from known
effects of tested merals. In the absence of
complete information on the effect of all
metals of concern on each important
species under a variety of conditions, the
ability to interpolate from existing dara to
predict effects for untested metals would
improve the accuracy of assessments.
QICARs would be particularly useful in
preliminary screening and in situations
analogous to those in which QSARs are
currently applied. Our results suggest that
the QICAR approach would be extremely
useful for this purpose. However, several
resolvable issues require attention before
the QICAR approach has the same general
usefulness as the QSAR approach. These
issues include exploration of more explana-
tory variables, careful evaluation of ionic
qualities used to calculate explanatory vari-
ables, examination of models capable of
predicting effects for widely differing mer-
als (e.g., metals of different valence states),
effective inclusion of chemical speciation,
examination of more effects, and assess-
ment of the applicability of QICARs to
phases such as sediments, soils, and food.
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