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Abstract Application of ecological risk assess-

ment to coastal and estuarine systems is acceler-

ating although it initially lagged behind

applications to land and freshwaters. Broader

spatial and temporal scales, and multiple stressor

integration are appropriately being considered

more frequently in all risk assessment activities.

This expansion and integration is essential for

coastal risk assessment. Because coastal assess-

ments must deal with co-occurrence of several

candidate stressors manifesting within broad spa-

tial and temporal scales, wider use of formal

methods for assessing causal linkages is needed.

Simple Bayesian inference techniques are dis-

cussed here to demonstrate their utility in quan-

tifying the belief warranted by available

information. The applicability of Bayesian tech-

niques is illustrated with two examples, possible

causes of fish kills on the Mid-Atlantic US coast

and possible causes of hepatic lesions in fish of

Puget Sound (Washington, US).

Keywords Risk assessment � Multiple

stressors � Causality � Bayesian inference �
Decision-making

Introduction

Initially, application of ecological risk assessment

to U.S. marine habitats lagged behind applica-

tions to freshwater and land. The reason was not

that coastal resource assessment was less impor-

tant. More than three quarters of all commercial

and recreational fish and shellfish species depend

on estuaries (Lewis et al., 2001) yet these

valuable coastal habitats remain in serious trou-

ble (U.S. Commission on Ocean Policy, 2004). A

lack of legal mandates was not the reason: ample

U.S. federal legislation existed (see Rand &

Carriger, 2001). The reasons for delay seem to

arise from cultural biases (Newman & Evans,

2002) and political boundaries. There was an

historical delay in implementation as North

Americans slowly began to question the assump-

tion that the oceans were too vast to be impacted

by humans. As an important example, coastal

eutrophication research lagged two decades

behind that addressing freshwater eutrophication

(Arhonditsis et al., 2003). Historical use patterns

of coastal resources tended to be more laissez-

faire than use patterns established for land

ownership and obligations associated with
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terrestrial landscapes. Relative to political

boundaries, marine pollution issues are more

likely to require interstate or international action

for which issues of sovereignty and coordination

delay decisions (Deacon et al., 1998).

Coastal habitats now receive an appropriate

level of attention, and ecological risk assessment

concepts framed initially with terrestrial or fresh-

water systems in mind are rapidly being adapted to

marine systems. Ecological risk assessment, as

currently practiced, requires some shift in empha-

sis to be most effective for marine systems. Crucial

changes include expansion of the ecosystem con-

text to encompass central ecotonal and landscape

themes, e.g., Brown et al. (2002) and Kiddon et al.

(2003). Some assessments of coastal systems can be

compromised by not considering the appropriate

spatial and temporal scale (Yanagi & Ducrotoy,

2003). Conservation action associated with tribu-

tyltin use is a good example of spatial shortcomings

in coastal management. Terlizzi et al. (2004)

concluded that marine protected areas (MPAs)

do not protect Hexaplex trunculus populations

from tributyltin-induced imposex, stating, ‘‘The

most important reason for the limited biological

effectiveness of MPAs is that the scale of processes

in marine systems is often much larger than scales

the reserve can encompass.’’ Hawkins et al. (2002)

also argue that the temporal scale applied to

assessments of tributyltin is too short. Lastly, the

co-occurrence of significant multiple stressors is

more likely in coastal systems than in terrestrial or

freshwater systems.

Consideration of broader scales and possible

multiple stressors necessitates more integrated

and formal identification of stressors (e.g., Brown

et al., 2002; Munns et al., 2002). Qualitative

approaches to identifying the most likely stressors

from a suite of candidates in conventional

assessments are being developed based on qual-

itative methods such as those of Hill (1965) or

Fox (1991). The sufficiency of these different

approaches remains untested for coastal assess-

ments requiring vigilant determination of the

likelihood that a candidate stressor is, in fact, the

stressor needing attention. Being qualitative and

often dependent on unstructured expert opinion,

these approaches can be susceptible to common

errors in human cognition and problem solving

(Newman & Evans, 2002). Bayesian techniques

provide more formal mathematics for causal

assessments, and consequently, for reducing the

likelihood of making such errors. Applying

Bayesian methods can enhance decision-making.

Two examples illustrate this last point about

formally identifying the most plausible stressor(s)

in complex coastal systems. Recent controversy

about fish kills notionally due to the dinoflagel-

late, Pfiesteria piscicida, demonstrates the high

costs of causal model development without ade-

quate consideration of alternate causes. Cancer

prevalence in Puget Sound fish demonstrates

Bayesian methods for isolating the most plausible

cause from many possible causes.

Fish kills caused by P. piscicida

From Bacon’s 1620 Novum Organum to recent

cognitive theory (Piattelli-Palmarini, 1994), one

thing is clear: the unaided human mind has

limited abilities to accurately determine causality

and likelihood. The minds of coastal risk assessors

are no exception as can be illustrated with recent

investigations of fish kills along the Mid-Atlantic

U.S coast. In 1992, Burkholder et al. (1992)

proposed that P. piscicida caused large fish kills in

coastal North Carolina. Uncertainty about the

cause of these and subsequent fish kills generated

much debate among regional scientists and

resource managers with early expert opinion

favoring the hypothesis that excess nutrient-

induced blooms of the toxin-producing P. pisci-

cida caused the kills. Suggestions were made that

P. piscicida blooms also pose a health hazard to

humans contacting infested waters. When subse-

quent large fish kills occurred in Mid-Atlantic

coastal waters, substantial revenue was lost in the

associated States as seafood sales dropped and

tourists avoided the region. Regional decision-

making was compromised because the informal

expert opinion process became mired in accusa-

tions of ethical misconduct, risk exaggeration, and

legislative stonewalling (Newman & Evans, 2002;

Whitehead et al., 2003; Belousek, 2004). How

important Pfiesteria or low dissolved oxygen

conditions were relative to causing fish kills

remains in active area of debate and research.

32 Hydrobiologia (2007) 577:31–40

123



In the presence of significant uncertainty about

causal relationships, qualitative rules-of-thumb,

such as Hill’s nine aspects of disease association

(Hill, 1965) and Fox’s rules of practical causal

inference (Fox, 1991), can guide judgments about

plausibility of candidate causes of adverse effects.

Table 1 illustrates the application of Hill’s rules

to fish kills notionally caused by P. piscicida.

These rules are intended to foster a qualitative

sense of plausibility for a candidate cause: they

are not designed to rigorously compare candidate

causes. More quantitative abductive methods are

afforded by Bayesian statistics and are presented

here as a means of improving causal inferences in

marine systems.

Stow (Stow 1999, Stow & Borsuk 2003) used

straightforward Bayesian methods to identify an

influential, but misleading, inference about coast-

al North Carolina fish kills. Pfiesteria piscicida

was found at sites of fish kills 17 of 33 times

during three consecutive years of sampling,

leading Burkholder et al. (1995) to conclude that

‘‘P. piscicida was implicated as the causative

agent of 52±7% of the major fish kills ... on an

annual basis in North Carolina estuaries and

coastal waters.’’ The flaw in this conclusion can be

illustrated with Bayes’s Theorem,

p Fish Kill Pfiesteriajð Þ

¼ p Fish Killð Þp Pfiesteria Fish Killjð Þ
p Pfiesteriað Þ

In words, the probability of a fish kill occurring

given P. piscicida was present is equal to the

product of the probability of a fish kill occurring

times the probability of finding P. piscicida if a

fish kill did occur divided by the probability of

finding P. piscicida. The data collected during the

three years estimated

Table 1 Hill’s nine aspects of noninfectious disease association applied to causality assessment for fish kills notionally
related to P. piscicida

Strength of Association The probability of fish kill when P. piscicida is present is 20.5%, as opposed to 4.9% when it is
not present (calculated from Burkholder et al., 1995; Newman & Evans, 2002). Numerous
laboratory bioassays have shown that, when P. piscicida is present at a level high enough, the
fish percent mortality is as high as 100%, as opposed to 0% in the control.

Consistency of association North Carolina data indicate that there were 9 (Burkholder et al., 1992: Table 1) and 10 (North
Carolina Division of Water Quality, http://h2o.enr.state.nc.us/esb/Fishkill/fishkillmain.htm)
fish kills, in 1991–1992 and 1997–2003, respectively, associated with Pfiesteria.

Specificity of association North Carolina fish kill data from 1997 to 2003 indicate that among 371 fish kills, only 10 were
suspected to be related to toxic effect of Pfiesteria. About 93 were associated with low DO
conditions. Other causes such as accidental toxic spills or field runoff may also have had
significant roles. The specificity of association is low.

Temporal sequence Among the fish kills linked to Pfiesteria, it is difficult to tell the order of occurrences of fish kills
and high densities of Pfiesteria.

Biological gradient In the reported field fish kill data, there’s no apparent gradient between the number of fish
killed and the exposure density and duration to P. piscicida.

Plausible biological
Mechanism

There is no consensus about the mechanism of P. piscicida killing fish yet. One possible
mechanism is toxin release. The structural information of the toxin has been only partially
defined (Moeller et al., 2001) and it has been demonstrated to be present in extracts from
P. piscicida strain (Burkholder & Glasgow, 2002). The other possible mechanism is
micropredatory feeding (Vogelbein et al., 2002).

Coherence with general
Knowledge

The relationship between P. piscicida and fish kills is coherent with the generally accepted
knowledge that extensive algal blooms can cause fish death, though the mechanisms vary.

Experimental evidence Considerable experimental evidence exists in the literature, indicating that P. piscicida can
cause fish death.

Analogy Most of the toxic dinoflagellates produce polyketide toxins (Miller & Belas, 2003). The toxin-
generating mechanism described for P. piscicida is similar to this although its structure is still
unclear. Its biological activity is often lost within a short period of time, while the typical
toxins from other dinoflagellates are stable or can be easily stabilized (Moeller et al., 2001).
On the other hand, the experiments with Pfiesteria shumwayae cultures of Vogelbein et al.
(2002) suggested that the organisms caused fish mortality by micropredatory feeding, not
exotoxin production.
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p Pfiesteria Fish Killjð Þ but the conclusion was

incorrectly made about p Fish Kill Pfiesteriajð Þ.
Estimates of p(Fish Kill) and p(Pfiesteria) are

needed to calculate the level of belief warranted

about P. piscicida causing a fish kill. When New-

man & Evans (2002) did this, the odds dropped

from the stated 1:2 to 1:5 of a fish kill occurring

when P. piscicida was present. The causal evidence

was not as strong as originally suggested.

This basic approach can be extended to analyze

two or more competing causal explanations in

coastal systems, e.g., Borsuk et al. (2004). Here, it

is extended to calculate the relative likelihood of

two competing causes for fish kills being low

dissolved oxygen (Low DO) versus P. piscicida at

the time that Burkholder et al. (1995) made the

causal influence about P. piscicida. The equation

for calculating the probability of a fish kill given

the presence of P. piscicida is provided above.

That for low dissolved oxygen causing a fish kill is

the following:

p Fish Kill Low DOjð Þ

¼ p Fish Killð Þp Low DO Fish Killjð Þ
p Low DOð Þ

The two competing explanations can be

expressed as the quotient of the two probabilities:

p Fish Kill Pfiesteriajð Þ
p Fish Kill Low DOjð Þ

¼

p Fish Killð Þp Pfiesteria Fish Killjð Þ
p Pfiesteriað Þ

p Fish Killð Þp Low DO Fish Killjð Þ
p Low DOð Þ

¼ p Pfiesteria Fish Killjð Þp Low DOð Þ
p Low DO Fish Killjð Þp Pfiesteriað Þ

The four probabilities needed to calculate this

quotient can be estimated with existing data. As

estimated by Burkholder et al., 1995, p(Pfieste-

riajFish Kill) is 0.52 based on the major fish kills

in North Carolina coastal waters from 1991 to

1993. Estimation of p(Pfiesteria) can be ex-

pressed in two ways because field surveys report

either densities of P. piscicida or Pfiesteria-like

organisms (PLO). P(Pfiesteria) was 0.345 for

PLO or 0.205 for P. piscicida (Newman & Evans,

2002).

The entire coastal North Carolina dissolved

oxygen (DO) data set for the same period as the

Burkholder et al. (1995) study (1/1/1991 to 12/31/

1993) was retrieved from the EPA STORET

database. The designation of low oxygen condi-

tions used here was somewhat arbitrary but

consistent with regulatory definitions. Solely for

purposes of illustration, all DO values lower than

4.0 mg/l were considered as indicative of low DO

conditions. There were 674 cases of low DO out

of 7100 DO measurements; therefore, p(Low

DO) was estimated to be 0.095.

Fish kill data from 1991 to 1993 in North

Carolina Coastal waters and estuaries were

obtained from Dr. Mark Hale, Division of Water

Quality, North Carolina Department of Environ-

mental and Natural Resources (personal commu-

nication). The fish kill event was categorized as

co-occurring with low DO condition if there was a

specific comment that low DO (generally less

than 4.0 mg/l) was observed during the period of

fish kill. This occurred for nine out of 41 cases so

0.220 is the estimated probability of the presence

of low DO when fish kills happened (p(Low

DO|Fish kill)).

In this illustration, the likelihood ratio of fish

kills due to P. piscicida versus fish kills due to low

DO concentration can be calculated based on the

above estimates for PLO and P. piscicida data,

respectively:

p Pfiesteria Fish Killjð Þp Low DOð Þ
p Low DO Fish Killjð Þp Pfiesteriað Þ

¼ 0:52ð Þ 0:095ð Þ
0:220ð Þ 0:345ð Þ ¼ 0:651

p Pfiesteria Fish Killjð Þp Low DOð Þ
p Low DO Fish Killjð Þp Pfiesteriað Þ

¼ 0:52ð Þ 0:095ð Þ
0:220ð Þ 0:205ð Þ ¼ 1:095

The results show that, when PLO is used in the

calculations, the likelihood that P. piscicida was
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the cause of a fish kill was lower than that of low

DO. When P. piscicida only was used in the

calculations, the likelihood of P. piscicida being

the cause was approximately the same as that of

low DO. Again, after the application of simple

Bayesian methods, the level of belief warranted

by the data changed from that originally inferred

in 1995.

Two points can be made from this example. The

decision based on available fish kill data to increase

resources and funding to address the P. piscicida

issue, but not dissolved oxygen issues, was not

optimally informed. Also, these analyses suggest

that putting more funding into producing better

assessments of p Pfiesteria Fish Killjð Þ, p Low DOð
Fish Killj Þ, p Low DOð Þ, and p Pfiesteriað Þ, and

gathering information relative to Hill’s rules-

of-thumb would result in much more informed

decision-making.

Liver cancer in a sentinel fish species

Bayesian tools are also applicable for assessing

the most plausible cause of an observed effect in

situations where there are many candidate causes.

The causal assessment of liver cancer in a sentinel

fish species of Puget Sound (Washington, USA)

will be used here to illustrate this point.

Hill’s (1965) rules-of-thumb can be used to

qualitatively judge plausibility of a particular

stressor causing an effect. Newman (2001)

applied Hill’s nine aspects of disease association

to hepatic cancer prevalence in English sole

from Puget Sound, generating the following

conclusions. (1) Strength of association between

sediment PAH concentrations and cancer prev-

alence generally enhanced belief that PAH

contamination caused cancerous lesions. (2)

The consistency of the association was high

between cancer prevalence and PAH concen-

tration. (3) Logistic regression incorporating

many candidate contaminants suggested that

the specificity of the association between cancer

and PAH concentration was moderate to high.

(4) Unfortunately, the long latency period

between exposure and cancer manifestation

did not allow the fourth aspect (consistent

temporal sequence of exposure then effect

manifestation) to be directly assessed; however,

experiments did demonstrate the appearance of

precancerous lesions after juvenile exposure to

PAH. (5) There was a biological gradient with

cancer prevalence increasing with increasing

PAH concentration. (6) A plausible mechanism

existed, i.e., P450-mediated production of free

radicals that form DNA adducts. (7) The

proposed causal link of PAH to liver cancer

was coherent with existing, general knowledge of

carcinogenicity. (8) Laboratory evidence was

produced to support this causal link. (9) Many

other analogous situations existed in the litera-

ture. This application of Hill’s rules suggested

that sediment PAH contamination was a likely

cause of the liver cancers in English sole.

However, many candidate causes were present

and quantitative discrimination among candi-

date causes was not done rigorously. Hill’s nine

rules-of-thumb can be adapted to such purposes

but are not designed specifically to discriminate

among candidate causes.

Formal Bayesian techniques allow one to be

more explicit in large-scale assessments with

several potential causes of adverse effect (e.g.,

Jones, 2001) but Bayesian techniques are infre-

quently applied to coastal assessment. The recent

work of Borsuk (Borsuk, 2004; Borsuk et al.,

2003; 2004) is a notable exception. More studies

such as those of Borsuk et al. are warranted for

complex coastal assessments in which several

possible causes exist or the likelihood is high that

effects result from multiple causes.

A Bayesian network can be constructed at the

beginning of such a study. Bayesian networks

show probabilistic connections (i.e., lines or

arcs) between variables (nodes). Figure 1 is an

example of a network that could be developed

for the work of Myers et al. (1998). In Fig. 1,

each connection represents a probabilistic

dependency between a parent and a child node,

and is represented by a function that mathe-

matically defines its dependence on the parent

variables.

Uncertainty about probabilistic dependencies

(i.e., arcs) can be represented and quantified in

Bayesian networks. Bayes’s theorem allows both

model parameters and observations to be prob-

abilistically distributed and random. Using a
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process called inversion, insight can be gained

about causes using effects information (e.g.,

liver cancer prevalence and PAH): experimental

observations (effects) may be used to infer the

parameters (causes) of a probabilistic model

(Robert, 1994). Conditioned on model parame-

ters (causes), the future course a system takes

may be described. The ability of Bayesian

statistics to account for model uncertainty, by

describing parameter uncertainty, makes them a

powerful tool for coastal risk assessors. They

have some drawbacks in developing uncertain

model parameters for risk assessment as dis-

cussed by Aven & Kvaløy (2002).

The simple depiction of the nodes in Fig. 1

could be further detailed to reflect understanding

of mechanisms and to reduce model uncertainty.

For instance, nodes representing the various

contaminant concentrations in different environ-

mental compartments could be expanded into

more specific chemical categories (e.g., orga-

nochlorines could have separate nodes for DDT

compounds, dieldrin, chlordanes, PCB congeners)

and hepatic lesions could be separated into lesion

types (Myers et al., 1994).

Besides these expansions, additional data

may cause shifts in the model functionality,

making the network development an iterative

process. For instance, Bayesian networks could

be developed to reflect the statistical relation-

ships for specific fish species because the

appearance of lesions and relevance of different

chemical classes in biotic or sediment compart-

ments were found to vary among three studied

fish species (Myers et al., 1994). These networks

could take into account the relative risk for fish

lesion prevalence from the output of the step-

wise logistic regressions generated by Myers

et al. (1990; 1994; 1998). Because Myers et al.

(1994) conducted field studies to measure the

strength of association of hepatic lesion preva-

lence in fish with different classes of contami-

nants, laboratory bioassays might be essential

for updating and reinforcing the relationships in

the network established from their field surveys.

This was acknowledged in Horness et al. (1998),

where a National Oceanic and Atmospheric

(NOAA) database of sediment contaminant

concentrations and hepatic lesion prevalence in

English sole was used to set hypothetical

Fish ageFish sex

Urbanization

Fish liver 
lesions

Sediment 
concentrations-
inorganics

Fish 
mortality

Sediment 
concentrations-
organochlorines
(DDTs, chlordane)

Sediment 
concentrations-
PAHs

Stomach 
concentrations-
Inorganics

Stomach 
concentrations-
PAHs

Stomach 
concentrations-
organochlorines

Fish liver tissue
concentrations-
inorganics

Fish liver tissue
concentrations-
PAHs

Fish liver tissue
concentrations-
organochlorines

Fig 1 Bayesian belief network structured from the results of Myers et al. (1998). Arrows represent probabilistic
dependencies and boxes represent variables
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sediment quality criteria. Although clear

evidence correlates hepatic neoplasms and

sediment contaminant concentrations, the asso-

ciation between tumor prevalence in fish and

mortality was variable, and dose-dependence

was not clear in some cases (Moore & Myers,

1994; Horness et al., 1998).

For management and predictive purposes, the

interconnected nodes of a Bayesian model place

multi-layered studies with many candidate causes

(e.g., Myers et al. (1994)) under a single modeled

framework. In creating a Bayesian network like

the one in Fig. 1 for stressor assessment, it is

important to include variables that may be

changed through future interventions by man-

agement as was done in Borsuk et al. (2004). Of

course, some variables such as fish age and sex

(Fig. 1) are not amenable to manipulation by risk

managers, but nonetheless, are pertinent as the

state of such variables influence model outcomes.

From the results of Myers et al. (1994), the age

variable was an important determinant for the

presence of some lesions. Sex did not have a

significant relationship and a weaker probabilis-

tic dependency would reflect this. Additional

nodes with greater relevancy to remedial action

by management could include loadings of specific

contaminants from point and non-point sources.

Resource managers can use such a model to set

goals for criteria to protect fish species and can

manipulate nodes to determine the implications

from management activities or the sensitivity of

various components in the model. In Fig. 1, the

nodes representing PAH and organochlorine

concentrations in sediment would have a stron-

ger correlation with fish hepatic cancer. Vari-

ables regulating these concentrations would be

the focus of future interventions. Easily imple-

mented dependency analysis can help determine

Bayesian network structure and foster imple-

mentation with available data sets (e.g., Cheng

et al., 2002).

Bayesian networks are also conducive to

linking data from separate studies into a cohesive

model. In the studies of fish cancer and PAH

from Myers et al. (1990; 1994; 1998) and Horness

et al. (1998), where several years of data were

gathered to identify potential causal agents, the

incorporation of prior information is especially

suited to this task. The frequentist methods used

in Myers et al. (1990; 1994; 1998), and Horness

et al. (1998) generally focus on the results from a

single relevant study and attempt to objectively

analyze those data. In the construction of prior

probabilities, Bayesian methods can quantify

results from previous experiments and combine

them with those from a current experiment,

even if they were conducted under dissimilar

conditions (Spiegelhalter et al., 1999). For

instance, previous studies cited in Myers et al.

(1994) found lesions associated with exposure to

contaminants including laboratory bioassays with

field collected English sole and extracts of PAH

from site-specific contaminants. Such information

can be useful in establishing a prior distribution

that does not rely on subjective information.

Subjective probabilities can be used if there is a

lack of such knowledge. In situations such as

these, Borsuk et al. (2001) and Berry et al. (2003)

implemented Bayesian hierarchical methods for

cross-system meta-analyses to generate parame-

ter estimates to specific systems that were infor-

mation poor.

In addition to aiding causal assessment, Bayes-

ian networks can contribute to risk management,

remediation, and other aspects of risk assess-

ment. Within a Bayesian network, nodes can

reflect processes likely to influence an outcome,

or how a management decision might change

processes or outcomes. Three types of nodes can

be used for these purposes: chance, decision, and

utility nodes (Bacon et al., 2002). Chance nodes

define processes related to the system; perhaps

representing processes or states that affect or are

affected by restoration activities. For instance, an

assessment-derived conceptual model might be

built within a Bayesian network framework that

included probabilities associated with pathways

of contaminant fate and transport amenable to

restoration. Decision nodes are nodes represent-

ing potential decisions by the risk manager.

Belief networks can contain nodes representing

decision variables as well as decision constraints

or criteria (Varis, 1997). The iterative procedure

used in risk assessments allows for interim

goals and changes in the Bayesian network

structure can reflect the need for interim goals

and decisions as they arise. Also, in the risk
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assessment process, assessment endpoints and

measurement endpoints can serve as one of

many foundations for criteria useful to decision

nodes in a network.

Utility nodes are nodes that represent the

satisfaction or gain that might accrue from deci-

sions. To normalize cost/benefit variables across

aesthetic and economic values, scales and weights

can be assigned as was done in Bacon et al. (2002)

for land management options and by Fenton and

Neil (2001) to increase or decrease the impor-

tance of certain utilities. Different remediation

techniques have various turn-around times, effec-

tiveness, risks, and costs that can be included in

utility nodes for a network. Along with listing the

possible remediation alternatives, the strength of

each alternative can be factored into the utility

nodes of the network.

Concluding remarks

Optimal coastal and estuarine ecological risk

assessment requires that the ecological risk

assessment process be expanded to allow more

integration of potential stressors and to include

wider spatial and temporal scales. Fortunately,

the means and impetus now exist for this to occur.

The informal expert opinion approach, even

when guided by sound rules-of-thumb, can be

insufficient, as more candidate causes require

consideration and wider scales are assessed.

Simple Bayesian concepts and tools will be

essential to effective risk assessment in the

immediate future. The number of publications

applying Bayesian statistics has increased in

epidemiological and environmental journals, pro-

viding more examples to adapt in coastal risk

assessments. Increased computation power and

the availability of software such as Analytica,

Netica (Norsys), or WinBUGS makes implemen-

tation of these methods easier. The explicit form

and ability to express probabilities for plausible

causes will accelerate decision making and reme-

diation because, when probabilities are clear,

judgments are more accurate and individuals are

more willing to act (Keynes, 1921; Ellsberg, 1961;

Chow & Sarin, 2001). Hopefully, application of

methods such as those of Borsuk, Stow and

Reckhow will become more routine and allow

more effective coastal resource decision-making

and action.
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