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Abstract—Both relative toxicity and interactions between paired metal ions were predicted with least-squares linear regression and
various ion characteristics. Microtox® 15 min EC50s (expressed as free ion) for Ca(ll), Cd(l1), Cu(ll), Hg(ll), Mg(ll), Mn(ll), Ni(ll),

Pb(I1), and Zn(Il) were most effectively modeled with the constant for the first hydrolysis (K,, for M + H,O

~ MOH™ + H¥)

although other ion characteristics were also significant in regression models. The |log K, | is correlated with metal ion affinity to
intermediate ligands such as many biochemical functional groups with O donor atoms. Further, ordination of metals according to ion
characteristics, e.g., |log K|, facilitated prediction of paired metal interactions. Pairing metals with strong tendencies to complex with
intermediate or soft ligands such as those with O or S donor atoms resulted in strong interactions.

K eywor ds—Metal Toxicity Bioactivity

INTRODUCTION

Quantitative structure—activity relationships (QSARSs) allow
prediction of organic toxicant and drug bioactivity. These re-
lationships, first developed in pharmacology, are often based on
surrogate or indirect measures of molecular qualities such as
lipophilicity using K,,, electrical qualities using Hammett con-
stants, or topology using the molecular connectivity index. Most
QSARSs used by the Office of Toxic Substances were based on
the surrogate measure, K, (Table 7.1 in Suter [1]). Measures
used for QSARSs can also involve more fundamental or primary
characteristics, e.g., electrical qualities using ionization poten-
tials or steric qualities using total molecular surface area. Quan-
titative structure—activity relationships based on such qualities
provide a richer understanding of underlying processes than
those using surrogate measures and, conseguently, can be more
effective for prediction beyond the particular compounds used
to develop the QSAR.

Although seldom done, characteristics of inorganic species
can similarly be used for predicting intermetal trends in bio-
activity [2-9]. Like QSARs for organic compounds, properties
of metal ions useful for predicting toxicity include both sur-
rogate and more direct measures of toxicant qualities. For ex-
ample, Biesinger and Christensen [3] correlated effects on
aquatic biota with metal sulfide solubility, a surrogate measure
thought to reflect metal tendency to combine with sulfhydryl
groups of biomolecules. Based on hard and soft acid and base
(HSAB) theory, Jones and Vaughn [4] and Williams and Turner
[7] correlated toxic effects to mice with the softness parameter,
g, ([coordinate bond energy of the metal fluoride — coordinate
bond energy of the metal iodide]/coordinate bond energy of the
metal fluoride). Metal hydroxide solubility product (log —K,
MOH), notionally reflecting metal affinity to O-containing
groups, was also correlated with inhibition of algal growth [8].
Similarly, the log of the constant for the first hydrolysis (K, for
Mr + H,O - MOH"! + H*) could be used as it also is
correlated with metal ion affinity to intermediate ligands like
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those with O donor atoms. (The log of K, will increase linearly
with the ion charge divided by the M—OH distance [10].)

Also found useful was the bivariate characterization of
metal-ligand complexation outlined by Turner et a. [11]. In
this scheme, AR (log of the stability constant for the metal
fluoride — log of the stability constant for the metal chloride)
and Z?r (Z = ion charge, r ionic radius) were surrogate
measures of covalent and ionic bond stabilities for metaligand
complexes. The tendency to form covalent bonds with groups
possessing an S donor atom (soft ligands) decreased with ARB.
The polarizing power, Z?/r, was a measure of the electrostatic
interaction strength between a metal ion and ligand. If these
two variables were used as axes to produce a complexation field
diagram of cations, stability of metal-intermediate ligand com-
plexes (e.g., ligandswith an O donor atom) would increaseaong
a line extending diagonally between the two axes [11-13].

Kaiser [6] generated an effective model from fundamental
ion characteristics by combining AN/AIP and AE, where AN =
atomic number, AIP = difference in ionization potentials be-
tween ion oxidation number OX and OX — 1, and AE, = the
absolute difference in electrochemical potential between theion
and its first stable reduced state. The atomic number (AN) re-
flected the size or inertia of theion. The AIP and AE, parameters
reflected the effects of atomic ionization potential and the ability
of the ion to change its electronic state, respectively. These
parameters were used successfully to develop models of effect
for three metal groupings based on electron configuration. Nie-
boer and Richardson [5] developed another set of variables for
prediction of bioactivity based on fundamental ion character-
istics (X2r and Z%/r). Again, Z?/r reflected the energy of an ion
when interacting electrostatically with aligand. The X2r (X,, =
electronegativity and r = the Pauling ionic radius) quantified
the importance of covalent interactionsin the metal-ligand com-
plexation relative to ionic interactions. (Electronegativity is cor-
related with the energy of an empty valence orbital and reflects
the ability of the metal to accept electrons. Combining electro-
negativity with the Pauling ionic radius yields an index that
guantifies the importance of covalent interactions relative to
ionic interactions [5].)
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Table 1.Metal ion characteristics used in regression models?

Outer

shell Log
Metal lon electron elec- . AP AE, —Keo AN

ion configuration trons AN r (A) (eV) V) AB X, |log Ky MOH X2r Z2Ir AIP o,

Mg?* {He}2s2ps or {Ne} & 12 072 739 238 576 131 1161 1050 1236 556 162 0.167
Ca?r {Ne} 3s?3p® or {Ar} g8 20 1.00 576 2.76 4.80 1.00 1272 5.00 1.000 4.00 347 0181
Mn2* {Ar}3d° 5 25 067 821 1.03 0.66 155 1059 1270 1994 597 3.04 0.125
Niz+ {Ar}3d? 8 28 069 1052 023 0.50 1.91 9.86 16.00 2517 579 266 0.126
Cu?* {Ar}3d° 9 29 073 1257 0.16 1.12 1.90 800 1980 2635 548 231 0.104
Zn?+ {Ar}3dw© 10 30 074 857 0.76 0.66 1.65 896 1650 2015 5.40 350 0.115
Cd?+ {Kr}4dw 10 48  0.95 791 040 -0.89 1.69 10.08 14.00 2713 421 6.07 0.081
Hog?* {Xe} 4f145dw° 10 80 1.02 832 091 -580 2.00 340 2550 4.080 3.92 9.62 0.065
Pb2+ { X e} 6524f145d1° 10 82 118 761 0.13 0.48 2.33 7.71 1870 6.406 3.39 10.78 0.131

aSee Materials and Methods section for data sources.
b Noble gas configuration.

In the present study, we assumed that the difference in ap-
plication of predictive modeling for organic compound and met-
al ion bioactivity rests on two factors. First, the QSAR approach
for organic compounds was incorporated into ecotoxicology
rapidly because it had already demonstrated its worth in phar-
macology. No similar body of knowledge existed for metal ions.
Second, prediction is complicated by metal speciation because
several potentially bioavailable forms can be present simulta-
neously. Some of the ambiguity associated with metal speciation
can be reduced with speciation models based on thermodynamic
equilibrium and the simplifying assumption that bioactivity is
generally correlated with the free ion concentration. Therefore,
organic compounds may have no inherent advantage over metal
ions relative to developing predictive models of bioactivity. We
hypothesized that both relative metal ion toxicity and interac-
tions between paired metal ions could be predicted using least-
squares linear regression and various ion characteristics. Spe-
cifically, we tested the value of surrogate and more direct mea-
sures of ion characteristics for prediction of toxicity using a
simple and widely accepted microbial assay, Microtox®. Nine
metal ions differing in electronic configurations were selected
(Table 1). They included two class A metals (Mg?* and C&a**)
[14] with hard spheres and electron configurations of noble
gases. The covalent interactions of these cations with ligands
were generally much weaker than those of the other seven met-
als. The remaining seven ranged from borderline to class B
metals with different tendencies for covalent interaction with
hard ligands. Both the AR and X2r parametersin Table 1 reflect
this increasing tendency toward covalent bonding with ligands
such as those with S donor atoms [11,12].

MATERIALS AND METHODS
Microtox toxicity assay

The Microtox assay was used to determine 15-min EC50
values for the nine metals (chloride salts) listed in Table 1. A
reconstituted marine bacterium (Vibrio fischeri Beijerinck 1889,
formerly Photobacterium phosphoreum) was exposed at 15°C
to osmotically adjusted (2% NaCl [w/v]) solutions of metals.
Bioluminescence, quantified over a range of metal concentra-
tions with the Microtox model 500 toxicity analyzer (Microbics
Corp., Carlsbad, CA, USA) was used to calculate the concen-
tration resulting in a 50% decrease in light output after 15 min
of exposure.

Final EC50 values were expressed in terms of specific metal
species concentrations. Concentrations of species, including
those of the free (aguated) ion, were predicted with PC MIN-

TEQAZ2 version 3.10[15]. The concentrations of Na(342.3 mM/
L), Cl (342.3 mM/L), pH (5.51), and total alkalinity (22.98 p.eq/
L) of the osmotically adjusted medium plus the dissolved metal
and Cl from the added metal salt were used in speciation cal-
culations. Assumptions of a fixed pH, closed system, and no
precipitation of solid phases were made during computations.

lon characteristics

lon characteristics were obtained from a variety of sources
and are summarized in Table 1. lonic radii were taken from
Shannon and Prewitt [16,17] using ‘IR values and the CRC
Handbook of Chemistry [18]. The AIP values were calculated
from ionization potentials in the CRC Handbook of Chemistry
[18]. Those for AE, came from Kaiser [6] and were checked
against more current tables of electrochemical series[18]. Most
AR values were calculated with stability constants from Smith
and Martell [19]. Those for the weak and consequently difficult
to quantify complexes came from Lindsay [20]. Average elec-
tronegativity values (X,) were from Allred [21]. The first hy-
drolysis constants, expressed in Table 1 as the absolute value
of the log of K, (Jlog K,|), were taken from Baes and Mesmer
[10], Turner et al. [11], and Brown and Allison [15]. Values for
the metal hydroxide solubility (log —Ks, MOH) came directly
from Fisher [8] and those of the softness parameter (o,) were
extracted from Pearson and Mawby [22].

Covalent (X2r) and ionic (Z%r) indices [5] were estimated
from the parameters in Table 1. The covalent index reflected
the ““‘importance of covalent interactions relative to ionic in-
teractions” or, more succinctly, ‘‘the electron attracting capa-
bility of an atom in amolecule”’ [5]. Theionicindex ‘‘ correlates
successfully with interactions that are known to be highly ionic
such as the hydration of cations. ..” [5]. The combined use of
AN/AIP and AE, incorporated ion inertia or size (AN), atomic
ionization potential (AIP), and electronic configuration (AE,)
during model development [6].

Relative metal toxicities

Initialy, both total and estimated free metal ion concentrations
(Caz+, Cd?*, Cu?r, Hg?", M@z, Mn?t, Niz+, Pb?*, and Zn?* in pM/
L) were used in model development. Models including free metal
ion plus neutral chloro complexes were also examined because
Simkiss and coworkers [23,24] suggested that chloro complexes
may be more bioactive in marine systems than previousy sus-
pected. For example, the Hg(Cl)3 concentration was considered in
addition to that of Hg?* because Hg(Cl)3 may be bioavailable due
to its lipophilicity [23,24], and it has an estimated membrane pen-
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Table 2.Unspeciated concentrations (wM/L) of metals used in inter-metal interaction experiment

Interacting metal

Metal Ca Cd Hg Mg Mn Ni Pb Zn
Cu
157 49,900 89.0 0.095 20,600 455.0 85.2 121 15.3
2.36 (100/83) (6/86) (<0.1/86) (100/84) (72/86) (73/86) (20/86) (83/86)
3.15 99,800 177.9 0.189 41,120 910.1 170.3 241 30.6
4.72 (100/79) (6/86) (<0.1/86) (100/83) (72/86) (73/86) (20/86) (83/86)
6.30 149,700 266.9 0.284 61,680 1,365 255.5 3.62 45.9
9.44 (100/74) (6/86) (<0.1/86) (100/82) (72/86) (73/86) (20/86) (83/86)
199,600 355.8 0.374 82,240 1,820 340.7 4.83 61.2
(100/70) (6/86) (<0.1/86) (100/80) (72/86) (73/86) (20/86) (83/86)
Mg
41.1 49,900 0.89 0.189 1.82 1.70 121 76.5
61.7 (100/100) (3/100) (<0.1/100) (58/100) (56/100) (10/100) (69/100)
82.2 99,800 1.78 0.374 3.64 341 241 152.9
1234 (100/100) (3/100) (<0.1/100) (58/100) (56/100) (10/1200) (69/100)
164.5 149,700 2.67 0.563 5.46 511 3.62 229.4
246.7 (100/100) (3/100) (<0.1/100) (58/100) (56/100) (10/100) (69/100)
199,600 3.56 0.748 7.28 6.81 4.83 305.9
(100/100) (3/100) (<0.1/100) (58/100) (55/100) (10/100) (69/100)

Average MINTEQ-predicted percentages of the total concentrations of metal present as freeions for the paired metals are indicated in parentheses

(e.g., % competing metal ion/% Cu?* or % interacting metal ion/% Mg?*).

etration rate 10° times faster than charged Hg complexes [24].
Further, estimated Hg?* concentrations were more than 10° times
lower than Hg(Cl)3 concentrations in the saline exposure solution.
However, for this paper, modelsincluding neutral chloro complexes
were abandoned after they demonstrated no clear superiority to the
total or free ion-based models.

Regression models of 15-min EC50 values versus candidate
ion characteristics were generated with PROC GLM of the SAS
package[25]. Modelsinvolving only oneindependent variable used
AE,, X2r, AB, log —K,, MOH, [log K|, or o,. Models with two
independent variablesincluded (AN/AIP, AE,), (Iog[AN/AIP], AE,),
(Xzr, Z2Ir), or (AB, Z?r), and were consistent with the work de-
scribed in the Introduction. Both (AN/AIP, AE,) and (log[AN/AIP],
AE,) were used because, contrary to the origina study of Kaiser
[6], there was no apparent advantage to using thelog transformation
of AN/AIP during our model development.

Model selection was based on the principle of parsimony: mod-
els with lowest dimensionality were favored. The principle of par-
simony wasformally applied to model selection by minimum Akai-
ke's information criterion estimation (MAICE). Akaike's infor-
mation criterion (AIC) was caculated for each model using the
estimated log likelihood (log L). The AIC quantifies the fit of the
model to the data after adjusting the log L for any differencesin
model complexity, i.e., different numbers of model parameters. If
two models with identical fits but different numbers of estimated
parameters were compared with MAICE, the model with the lowest
number of parameters would be favored. Neter et a. [26] and
Newman [27] provide the following formulae for thelog likelihood
function and AIC, respectively.

1

n n :
log L = —Zlog2m — Zlog,o? — o 21 (Y, = by —b;X,)?

AIC = —2(log L) + 2P
where

the number of observations,

the model variance (estimated by the model mean
square error, MSE),

Y, the ith Y value,

0-2

X, = theith x, value,
b, = the estimated intercept,
b, = the estimated slope, and

P = number of parameters estimated in the model.

If two independent variables (x,, X,) were used, an additional
term, —b,X,, was added to the squared term at the end of the
above equation to estimate the log likelihood. The squared term
is the square of the difference in the observed and predicted
values from the model. The model with the smallest AIC was
judged to have the most information.

Metal interactions

We assumed that metal ion interactions result primarily from
competition for ligand groups on biomolecules. Thissimplifying
assumption has been applied successfully in previous modeling
efforts [3,8,28-32]. Metal pairs were added simultaneously to
the bacterial suspension to determine the interaction between
metals on bacterial bioluminescence. Metals were paired based
on the rankings of contrasting characteristics defined above for
the nine metal ions. Combined metal concentrations producing
significant but incomplete inhibition were used. Copper was
paired with Ca, Cd, Hg, Mg, Mn, Ni, Pb, and Zn, and Mg was
paired with Ca, Cd, Hg, Mn, Ni, Ph, and Zn (Table 2). In this
manner, the metals were matched with two metals displaying
contrasting interactions with ligands (i.e., Cu with primarily
covalent interactions with affinities for donor atoms of S > N
> O, and Mg with primarily electrostatic interactions and rel-
ative affinities of O > N > S [5,8]).

The bioluminescence of V. fischeri was measured at 1-min
intervals for aperiod of 5 min using all Cu- and Mg-metal pairs.
Each metal pair was assayed three or four times. After prelim-
inary trials indicated apparent first-order kinetics for inactiva-
tion, data were analyzed by fitting the natural log of light output
against time. The absolute values of the slopes of these lines,
as determined using least-sgquares linear regression, were esti-
mates of the first-order rate constant (K) for inactivation. The
exposure concentration of Cu or Mg was then plotted against
the probit of K to produce four lines, one for each concentration
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Table 3.Total EC50s, free ion-based EC50s, and free plus neutral chloro complex-based EC50s (mean *= SD)
in wM/L for nine metals (added as chloride salts) using Microtox®

Proportion
free +
neutral Free ion + neutral
Proportion Free ion-based chloro chloro complexes

Metal n Total EC50 free ion? EC50 complexes? EC50
Ca 3 226,508 = 23,069 1.0 226,508 =+ 23,069 1.0 226,508 = 23,069
Cd 4 195.6 + 18.8 0.061 11.94 + 1.15 0.408 79.81 + 7.71
Cu 3 2.78 = 0.52 0.858 2.39 = 0.44 0.868 241 = 0.45
Hg 3 0.4574 + 0.0345 1.07E-12 4.89E—-13 *= 3.69E—14 0.107 0.0494 + 0.0037
Mg 3 209,301 + 2,844 1.0 209,301 + 2,844 1.0 209,301 + 2,844
Mn 3 1,352 + 62 0.717 969.4 * 44.7 0.729 985.6 + 45.3
Ni 3 336.6 = 67.6 0.729 2454 = 49.3 0.831 279.7 + 56.2
Pb 3 0.8555 + 0.0200 0.197 0.1685 =+ 0.0039 0.375 0.3208 + 0.0075
Zn 4 18.28 = 2.15 0.834 15.24 = 1.79 0.856 15.65 = 1.84

aEstimated using MINTEQA2 version 3.10.

of the potentially interacting metal (Interacting metal, Table 2).
Probit transformations of rate constants allowed linearization of
the sigmoidal curve of exposure concentration versus K. The
probit metameter was used assuming the sigmoidal curve could
be described as a cumulative normal distribution. Additional
attempts to linearize these data with two metameters (logistic
and Weibull transformations) frequently used to analyze dose—
response data did not improve fit.

RESULTS
Relative metal toxicities

The exposure concentrations were expressed as either total
metal, free ion, or free ion plus neutral chloro complex con-
centrations during initial model development. The predicted free
ion concentrations were examined under the assumption that
these concentrations more accurately reflected bioreactive con-
centrations than total metal concentrations. As discussed in the
Introduction, the neutral chloro complexes were also considered
based on their lipophilicity [23,24]. The 15-min EC50 values
(*standard deviation) expressed in these three concentration
metameters are provided in Table 3.

If models werefit using total dissolved metal concentrations,
all variables except Z?r and AN/AIP were statistically signifi-
cant (e« = 0.05) in the regression models (Table 4). Although
several (e.g., those based on log —K¢,OH or |log K,|) provided
adequate fit, use of calculated free ion concentrations (Table 5)
provided the best fitting model. That using free ion concentra-
tion and |log K,,| had a high r2 of 0.93 and the lowest AIC (Fig.

1). (Because Al C depends on the magnitude of the concentration
metameter in the models, it cannot be used to compare relative
fit of models based on total versus free ion concentrations.)
Those using AR also provided adequate fit. Using MAICE, the
best fitting, two-independent variable model (r2 = 0.85, AIC =
44.64) was log EC50 (free ion) = f(AB, Z%r). But AR alone
accounted for 82% of the variation in EC50 values indicating
that Z%/r contributed little to the model fit.

Metal interactions

When Cu was paired with the other eight metals, interactions
conformed to expectations based on ligand-binding tendencies
alone. The|log K, | values for the various metals were used here
to reflect relevant differences in ligand-binding tendencies al-
though, as indicated above, other variables such as AR could
also have been used for this purpose. Nonparallel (intersecting)
lines of metal concentration versus probit of K at different com-
peting metal concentrationswere produced after combining met-
al ions with similar |log K,| values (e.g., Cuz* and Pb?* in Fig.
2A), indicating metal interaction. In contrast, when metal pairs
with dissimilar |log K,| values were combined (e.g., Cu?* and
Mg?*+), the resulting lines of Cu?* concentration versus probit
of K at different Mg?* concentrations tended to be parallel,
indicating little interaction between metals (Fig. 2B).

All metals paired with Cu (Ca, Cd, Hg, Mn, Ni, Pb, or Zn)
except Mg produced intersecting lines. The point of intersection
was approximated visually and the mean point of intersection
from three to four replicates was calculated for each pair. There

Table 4.Results from the regression of total log EC50 and several ion characteristics®

Log EC50 = f(x) r2 Model (log EC50=) MSE AlC
AEL 0.67 0.46 + 1.80(AE,) 1.304 32.06
X2rb 0.61 4.96 — 1.01(X2r) 1429 3374
ABP 0.63 1.80 + 0.51(AB) 1377  33.06
log —KgoMOHP 0.86 7.39 — 0.336(log — KggMOH) 0.861  25.37
[log Ky 0.78 —4.17 + 0.69(|log Ky|) 1.074  28.68
Softness index (o,)° 0.61 —3.24 + 44.85(c,) 1428 33.74
AN/AIP, AE, 0.82 2.02 — 0.26(AN/AIP) + 1.48(AE,) 1.055 29.34
log AN/AIP, AE.° 0.80 2.51 — 2.91(log AN/AIP) + 1.48(AE,) 1108  30.12
X2rb, Z2(r 0.65 8.46 — 1.22(X2r) — 0.60(Z?r) 1448 3456
AB*, Z%r 0.64 1.09 + 0.50(AB) + 0.15(Z2/r) 1480 34.95

aThose models with the smallest Akaike's information criterion (AIC) were judged to have the most
information regardless of the number of independent variables.
bVariable had a significant effect on log EC50 (a = 0.05).
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Table 5.Results from the regression of free ion-based log EC50 and several ion characteristics®

Log EC50 = f(x) r2 Model (log EC50=) MSE AlC
AE, 0.15 —1.42 + 2.10(AE,) 5206 71.83
X2r 0.34 5.71 — 1.86(X2r) 4595  66.44
ABP 0.82 —0.55 + 1.44(AB) 2403  45.26
log — KgoMOHP 0.75 12.59 — 0.78(log —KsxMOH) 2.845  49.87
[log K, ? 093 —16.65 + 1.87(|log K,|) 1534 3513
Softness index (o,)° 0.60  —12.87 + 110.9(c}) 3554 56.84
AN/AIP, AE, 0.52 4.79 — 1.04(AN/AIP) + 0.83(AE) 4214  60.77
log AN/AIP, AE, 0.49 7.03 — 11.99(log AN/AIP) + 0.78(AE,) 4338 61.78
Xar, Z3Ir 0.35 1.70 — 1.62(X2r) + 0.690(Z2r) 4926  66.42
ABP, Z2r 0.85 —5.22 + 1.36(AB) + 0.98(Z%r) 2381 4464

279

aThose models with the smallest Akaike's information criterion (AIC) were judged to have the most
information regardless of the number of independent variables.
bVariable had a significant effect on log EC50 (o = 0.05).

was a clear positive relationship if |log K,| values were plotted
against these mean points of intersection. There was a general
increasein the point of intersection (Fig. 3) as|log K, | increased,
suggesting diminishing interactions between paired metal ions.

Strong metal interactions were not predicted for Mg with
other metals based on the very weak metal-ligand covalent
interactions for Mg. Indeed, if the metal pairs with the most
similar but high values of |log K,,| (Mg and Ca) were combined,
the lines of Mg?* concentration versus probit K at different Ca?*
concentrations were parallel, suggesting little interaction be-
tween metals (Fig. 2C). For Mg paired with other metals (Cd,
Hg, Mn, Ni, Pb, or Zn), the lines of Mg?* concentration versus
probit K generated for the different competing ion concentra-
tions were also parallel.

DISCUSSION

Relative toxicities of metal ions were predictable with linear
regression using several measures of ion characteristics. The
best model involved |log K,|, and accounted for 93% of the
variation in EC50 values (free ion) for the nine metals. This
implied that the differences in ion affinities for intermediate
ligands such as many biochemical functional groups with O
donor atoms strongly influenced bioactivity of the nine metals.
The lack of significance for Z%r was expected as the tested
divalent metal ions had relatively similar Z%r values. It isim-
portant to remember that the precision of values for the ion
characteristics vary and likely contributed to the relative value
of each in fitting the toxicity data also.

log EC50

-15 T T T T T

Fig. 1. The model for log EC50 (freeion) and |log K| for nine metals.

Data sets from the literature were fit using these same pro-
cedures and good models resulted even without speciation es-
timation. For growth inhibition of marine algae by Ca(ll),
Mg(Il), Mn(ll), Zn(I1), Cd(I1), Cu(ll), Pb(ll), and Hg(ll) [8],
the best model included |log K| (r2 = 0.87), log —K,, MOH
(r2 = 0.91), or both X2r and Z%r (r2 = 0.87). Daphnia magna
reproductive impairment (3 week EC16) [6] was modeled with
AN/AIP and AE, values for 17 metals (Ca(ll), Mg(ll), Mn(l1),
Ni(I1), Zn(I1), Cd(l1), Cu(ll), Pb(ll), Hg(I1), Na(l), K(1), Sr(l1),
Ba(ll), Fe(ll1), Al(I1), Sn(ll), and Co(ll)) and accounted for
76% of the variation among EC16 values. Similarly, 48 h LC50
of D. magna [6] for Ca(ll), Mg(I1), Mn(l1), Ni(ll), Zn(ll), Cd(l1),

6 A
5 - e
e
4 -
3 |
2 1 L 1
0 2 4 6 8 10
Cu2* (UML)
5 B :
X _ — e ——
= I A
S 4 A Aa——h A
o /
o P
3 1 L 1 i
0 2 4 6 8 10
Cu?* (UMIL)
5 C

0 50 100 150 200 250
Mg?* (mM/L)

Fig. 2. Probit of first order rate constants (K) versus metal ion con-
centrations at four different concentrations of potentially competing
metal ions. Strong interactions were noted between Cu?* and Pb?*
(intersecting lines in A) but no apparent interactions (parallel lines)
were noted for the Cu?* and Mg?* (B) and Ca?* and Mg?* (C) metal
ion pairs. Respectively, the symbols O, A, [], and ¢ designate Pb?*
concentrations in A of 0.238, 0.475, 0.713, and 0.951 pM/L, Mg?*
concentrations in B of 20.6, 41.1, 61.7, and 82.2 mM/L, and C&**
concentrations in C of 49.9, 99.8, 149.7, and 199.6 mM/L.
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Fig. 3. The degree of metal interaction, measured as the point of
intersection in Cu?* versus probit of K plots, for nine metals ranked
by |log K. A similar ranking for metals paired with Mg2* showed
no such trend.

Cu(ll), Hg(ll), Na(l), K(1), Sr(1l), Ba(ll), Al(ll1), and Co(ll)
were effectively modeled with these two parameters (r2 = 0.86).
The r2 values for the reproductive impairment and acute toxic
effect data were 0.67 and 0.82, respectively, if X2r alone was
used to generate the regression models. Kaiser [6], using log
AN/AIP instead of AN/AIP, obtained much higher correlation
coefficients for these last two data sets by developing separate
models for metals with noble gas electron configurations, those
with partially or completely filled d orbitals, and those with
filled sand d orbitals but incomplete p orbitals. It isour intention
to expand the present range of metals so that separate models
can be assessed for subsets of metal ions with similar electron
configurations.

The reader should note that applying these models for pre-
diction of lethal effect may require correction of a backtrans-
formation bias [33] regardless of the final model selected. This
bias arises from the use of the log of effect, e.g., log EC50 or
log LC50. The mean predicted log of effect (e.g., log EC50)
from the original regression model (logY = b, + b,X + € where
e is the model error term) is unbiased, but the predicted value
of the effect (e.g., EC50) from the backtransformed linear model
(Y = 10"™10°*) is no longer an unbiased prediction of mean
response because the term 10¢ is not included in the backtrans-
formed model. The factor, 10" 1°Ms&2) can be used to correct for
this biasif, asis the case with the models described herein, the
residuals appear to be normally distributed. The required MSE
values are provided in Tables 4 and 5 for this purpose.

Based on methods for assessing competitive inhibition of
enzymes [34] and the conceptual model of Voyer and Heltshe
[35], the methods described here allowed visualization and
semiquantitative ranking of paired metal interactions. Thistech-
nique for metal ions has several advantages. First, standard
methods for assessing interactions rely on descriptive statistical
[35] or mathematical [36—41] models with no direct linkage to
mechanisms of toxic action. Their present use is based on the
assumption that each toxicant acts nonspecifically as a Selyean
stressor because this satisfies the requirement of similarity of
mechanism for effect [36,42]. This convenient assumption is
often inappropriate. Further, there are also clear indications that
resulting additive, synergistic, or antagonistic combinations may
be influenced by exposure concentrations in addition to the par-
ticular pair of toxicants [42,43]. As can be seen from Figure
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2A, concentrations combined near or very distant from the point
of intersection would have prompted very different conclusions
if the standard approach, i.e., one or few paired concentrations,
were used.

As predicted under the simplifying assumption that inter-
actions reflected competition for ligands of biomolecules, those
metalswith only weak covalent binding showed littleinteraction
if combined. Any metal combined with Mg, a metal with only
weak covalent interactions with pertinent ligands, showed little
evidence of interaction. In contrast, pairing metals with strong
tendencies to complex with intermediate or soft ligands such
asthose with O or S donor atoms resulted in strong interactions.
Consequently, the assumption that interactions reflected com-
petition for ligands of biomolecules was supported for thislim-
ited number of divalent metal ions. More work with a wider
range of metals including those with more divergent Z%/r values
is required. Refinement of the semiquantitative methods used
here is also essential during any extension of this approach.
Indeed, results shown here may only be pertinent to the range
of combined concentrations tested.

Regardless of the limitations of these data and their inter-
pretations, the hypotheses were supported that trendsin relative
toxicities and metal ion interactions could be predicted from
ion characteristics reflecting differences in metal-ligand inter-
actions. Successful development of D. magna acute toxicity and
reproductive impairment models and an algal growth inhibition
model indicate the potential for this parsimonious conceptual
model being extended beyond this simple microbial assay.
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